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PREDICTION OF STATIC AERODYNAMIC CHARACTERISTICS

FOR SLENDER BODIES ALONE AND WITH LIFTING

SURFACES TO VERY HIGH ANGLES OF ATTACK*

Leland Howard Jorgensen

Ames Research Center

SUMMARY

An engineering-type method is presented for computing normal-force and pitching-

moment coefficients for slender bodies of circular and noncircular cross section alone and

with lifting surfaces. In this method, a semiempirical term representing viscous-separation

crossflow is added to a term representing potential-theory crossflow. 111computing Qy and

C m for bodies alone, slender-body theory is used for the term representing the potential

crossflow. For bodies with thin wings and tails, the linearized potential method of Nielsen,

Kaattari, and Pitts, modified for high angles of attack, is used.

For many bodies of revolution, computed aerodynamic characteristics are shown to

agree with measured results for investigated free-stream Mach numbers from 0.6 to 2.9. The

angles of attack extend froin 0° to 180 ° for Moo = 2.9 and from 0 ° to 60 ° for Moo = 0.6

to 2.0.

For several bodies of elliptic cross section, measured results are also predicted reason-

ably well over the investigated Math number range from 0.6 to 2.0 and at angles of attack

from 0° to 60 °. As for the bodies of revolution, the predictions are best for supersonic Math

numbers.

For body-wing and body-wing-tail configurations with wings of aspect ratios 3 and 4,

measured normal-force coefficients and centers are predicted reasonably well at the upper

test Math number of 2.0. However, with a decrease in Math number to Moo = 0.6, the

agreement for CN rapidly deteriorates, although the normal-force centers remain in close

agree me n t.

For Moo=0.6, 0.9, and 2.0 and angles of attack of 10 °, 20 ° , 30 ° , 40 ° , and 50°,

vapor-screen and oil-flow pictures are shown for many body, body-wing, and body-wing-tail

configurations. When separation and vortex patterns are asymmetric, undesirable side forces

are measured for the models even at zero sideshp angle.

These side forces can be significantly affected by changes ir_ Mach number, nose

fineness ratio, nose bluntness, and body cross section. Generally, the side-force coefficients

decrease or vanish with the following: increase in Math number, decrease in nose fineness

ratio, change from sharp to blunt nose, and flattening of body cross section iparticularly the

body nose). Additions of afterbody strakes, wings, or wings plus tail produce much smaller

or no appreciable effects.

*Formerly issued as NASA TM X-73,123 with limited distribution. Reissued for unlimited distribution.



CHAPTER 1

INTRODUCTION

Over the last several years, high angle-of-attack aerodynamics has increased in impor-

tance because of the demand for greater maneuverability of space shuttle vehicles, missiles,

and military aircraft (both manned and remotely piloted). Until recently there has been a

general lack of analytical methods and aerodynamic data suitable for use in the preliminary

design of most advanced configurations for flight to high angles of attack over a wide range

of Mach and Reynolds numbers. There has been, however, considerable research leading to

the development of methods for predicting the static aerodynamic characteristics of simple

shapes, primarily slender bodies of revolution.

Prior to the work of Allen in 1949 (ref. 1), most analytical procedures for computing

the aerodynamic characteristics of bodies were based on potential-flow theory, and their

usefulness was limited to very low angles of attack. Allen proposed a method for predicting

the static longitudinal forces and moments for bodies of revolution inclined to angles of

attack considerably higher than those for which theories based only on potential-flow con-

cepts are known to apply. In this method, a crossflow lift attributed to viscous-flow separa-

tion is added to the lift predicted by potential theory. This method has been used quite suc-

cessfully to compute the aerodynamic coefficients of inclined bodies (e.g., refs. 1-6),

although most data available for study until 1961 were for bodies at angles of attack below

about 20 ° , and the formulas were initially written to apply only over about this angle-of-

attack range.

In 1961, Allen's concept was adapted by Jorgensen and Treon (ref. 7) for computing

the normal-force, axial-force, and pitching-moment coefficients for a rocket booster

throughout the angle-of-attack range from 0 ° to 180 °. Reasonable agreement of theory with

experiment was obtained for a test model of the rocket booster over the Mach number cange

from 0.6 to 4. The Allen concept was further applied by Saffell, Howard, and Brooks

(ref. 8) in 1971 in a computer-programmed method for predicting the static longitudinal

aerodynamic characteristics of low aspect-ratio missiles operating at angles up to 180 °.

In 1958, a method for computing the aerodynamic characteristics for bodies of non-

circular cross section was proposed by Jorgensen (ref. 6). In this method, normal-force and

pitching-moment coefficients ((_Vo and Cmo) are computed by Allen's formulas for the

2



equivalent body of revolution which has the same axial distribution of cross-sectional area as

the noncircular body. Then the values of (_r and C m for the noncircular body are computed

from CN/CNo and Cm/Cmo ratios determined from apparent mass coefficients (i.e., l'ronl

slender-body theory). Good agreement of theory with experiment (ref. 6) was obtained by

this procedure for bodies of elliptic cross section at the conditions investigated (a/b = 1

to 2,_ =0 ° and 90 ° , Moo=2to4, andc_=0 ° to 20°).

Early in 1973, the Allen concept was again applied by Jorgensen (ref. 9) to further

develop an engineering-type procedure for computing normal-force, axial-force, and

pitching-moment coefficients for slender bodies of circular and noncircular cross sections a!

= 0° to 180 ° . The C N and ('m formulas were written, however, for a body whose cross-

sectional shape remains constant over the body length, but the cross-sectional area. of

course, is allowed to vary.

In 1973, Jorgensen (refs. 10 and 11)rewrote the Q,\, and C m expressions to apply for

the general case of a slender body alone or with lifting surfaces where the cross-sectional

shape, as well as the cross-sectional area, is allowed to vary along the body length. For the

special case of winged-elliptic cones, simplified expressions for Q¥ and C m were also pre-

sented. Good agreement between predicted and experimental results was shown. However,

experimental results available for comparison with the method were limited to simple ellip-

tic bodies and winged-elliptic cones at angles of attack less than about 20 ° and Math

numbers only from 2 to 4. Thus, it was concluded that additional comparisons for these and

more diverse configurations were needed at higher angles of attack and lower Mach numbers

to determine validity limits for the method.

In 1972-73 there was a great need to enlarge the relatively small data base for bodies

alone and in combination with wings and tails at subsonic, transonic, and supersonic Mach

numbers. This need still exists today, but it has been alleviated significantly by some recent

introductory investigations into this high oe field (e.g., refs. 12-21). Most studies have been

initiated primarily for application to missile aerodynamics. Two recent studies, however,

have been more aircraft oriented in that they have been directed toward the determination

of experimental aerodynamic characteristics for slender bodies with thin wings (ref. 20) and

with wings and a tail (ref. 21). There is still need for study and analysis of much of this

recently obtained data both for slender bodies alone and for bodies with wings at very high



anglesof attack.As previouslymentioned,the Jorgensenmethodshouldbe further com-

paredwith experiment.Also, there is an urgent need for continued study of unwanted side

forces and yawing moments which have been shown to develop for models at high a values

with /3 = 0 °. These unwanted side forces and yawing moments, which probably lead to

undesirable stall/spin characteristics, have been measured on noses alone, bodies alone,

bodies with wings, and bodies with wings and a tail (e.g., refs. 12-21).

In view of the foregoing, the present study was initiated to accomplish the following

objectives:

1. Review and extend the derivation of Jorgensen's engineering-type method

(refs. 9-11 ) for computing the normal-force and pitching-moment characteristics of slender

circular and noncircular bodies alone and with thin lifting surfaces.

2. Assess the method for predicting the aerodynamic characteristics of missile-like

bodies of revolution.

3. Assess the method for predicting the aerodynamic characteristics of bodies of ellip-

tic cross section.

4. Assess the method for predicting the aerodynamic characteristics of bodies with

thin wings alone and in combination with a tail.

5. Present and discuss visual observations of the vortex flow fields over models of

bodies alone and in combination with wings.

6. Present and discuss data pertaining to the origin and alleviation of undesirable side

forces and yawing moments associated with high a flight at j3 = 0 °.

Ill connection with objectives (5) and (6), the present study is limited in scope to an

experimental study of the vortex flow fields and side forces associated with bodies and

body-wing combinations. It is firmly believed that a larger experimental foundation must be

acquired at this time to aid in the further development of flow-field modeling techniques

that can be applied with confidence in preliminary design studies. This is not to say that

important semiempirical modeling techniques have not already been studied. Most of these

techniques have been based on an impulsive flow analogy and applied to slender bodies of

revolution. In this analogy, it is assumed that the crossflow plane is swept uniformly down

the length of an inclined body at the rate Voo cos o_. Then there is an analogy made between

the leeward flow field and the developing wake behind an impulsively started cylinder in



crossflow. This analogy was initially suggested by Allen and Perkins (ref. 2) and applied by

Kelly (ref. 22).

The impulsive flow analogy probably has been used most elegantly in recent studies by

Wardlaw (refs. 23 and 24). In one of his latest studies (ref. 24), he simulated the viscous

crossflow plane by superimposing a large number of point vortices on the potential solution

for flow about a cylinder. For some pointed-nose bodies, he has shown qualitative agree-

ment with experimental observations, but even the latest Wardlaw method still must be

considered to be in an early exploratory phase. Others have used the impulsive-flow analogy

and attempted to model the crossflow field (e.g., refs. 25-32).

Attempts also have been made to solve the crossflow field problem with the Navier-

Stokes equations (refs. 33 and 34), but these studies have been applied only to bodies at

supersonic speeds and moderate to low angles of attack. Computer times appear to become

prohibitive for most practical cases, and turbulence modeling is not yet demonstrated.

Because of many deficiencies in the understanding of the physical flow fields around

bodies and wings at very high angles of attack, further experimental investigation is required

before much reliability can be realized from further analytic modeling.



CHAPTER2

DERIVATIONOF BASICMETHODFOR COMPUTINGCN AND Cm

CHARACTERISTICS

Here we first review the derivation of some basic equations for computing the

normal-force and pitching-moment coefficients, CN and Cm, for slender bodies of revolu-

tion to very high angles of attack (section 2.1). Then we extend the derivation to obtain

more general CN and Cm equations that can be used for slender bodies of circular and

noncircular cross section alone and with thin lifting surfaces (section 2.2). Necessary empir-

ical input values of crossflow drag coefficient for circular cylinders are presented in sec-

tion 2.3, and theoretical formulas to obtain input local normal-force coefficients for non-

circular configurations are presented in section 2.4. Finally, in section 2.5, we briefly discuss

the relative influence of derived potential-flow and viscous crossflow terms used in the basic

equations to compute both C V and Cm as a function of angle of attack.

2.1 Bodies of Revolution

In 1949, H. J. Allen (ref. 1 ) proposed a heuristic concept for predicting the static longi-

tudinal forces and moments for bodies of revolution inclined to angles of attack consider-

ably higher than those for which theories based only on potential-flow concepts are known

to apply. In this concept, a crossflow lift attributed to viscous crossflow separation is added

to the crossflow lift predicted by potential-flow theory. For the potential-flow lift, Allen

used the slender-body equation derived in 1923 by Max Munk for airship hulls (ref. 35).

From the momentum consideration, Munk (ref. 35) showed that, for slender (high-

fineness-ratio) bodies, the potential-flow cross force per unit length fp at any station along

the body is given by

]p = (K2 - K1 )qoo sin 2o_ dA

where A is the cross-sectional area of the body at any axial distance x from the nose apex: ot

is the angle of attack; and Kz and KI are, respectively, the transverse and longitudinal

apparent mass coefficients for the body. From calculations of K 2 and Kj made initially by

H. Lamb (ref. 36_ for ellipsoids of various fineness ratios, Munk (ref. 35) has shown that

6



K z - K_ is approximately unity for high fineness ratios. It has been customary to assume a

value of unity for the factor K2 - K1, and it is assumed in this formulation.

G. N. Ward (ref. 37) has shown that the section cross forcefp at small angles of attack

acts at an angle midway between the normal to the axis of revolution of the body and the

normal to the free-stream velocity (i.e., at an angle or/2). With this consideration, equa-

tion (2.1) is multiplied by cos (o_/2) to determine the normal-force distribution. At high c_, the

potential lift becomes small in comparison with the viscous crossflow lift, and it is of little

practical consequence whether this low o_multiplier [cos (o_/2)] is retained or replaced with

unity.

Now consider the derivation of the crossflow lift attributed to viscous crossflow separa-

tion. Allen (ref. 1), for a body of revolution of high fineness ratio, first treated each circular

cross section as an element of an infinitely long circular cylinder of the same cross-sectional

area. With this assumption, the local cross force per unit length due to viscosity is given by

pv,?
(2.2)

fv = 2rCd n 2

where r is the body radius at any station x from the nose apex; Vn is the velocity normal to

the longitudinal axis; p is the mass density; and Cdn is the steady-state crossflow (or normal)

drag coefficient based on qn' diameter, and unit length at station x. Cdn is a function of

both the Mach number and Reynolds number components normal to the cylinder longitu-

dinal axis. Hence, for a body at angle of attack, Cdn is a function of

Vn
M n - - Moo sin a (2.3)

a

and

Re n = Re sin o_ (2.4)

where

Vn = Voo sin o_ (2.5)

Here Moo, Re, and Voo are free-stream values, respectively, of Mach number, Reynolds

number, and velocity; the speed of sound is denoted by a.



For this study, Cdn is taken as the steady-state crossflow drag coefficient for a circular

cylinder. Other researchers (e.g., refs. 22-32) have assumed that the development of the

crossflow with distance along an inclined body of uniform diameter is analogous to the

development with time of the flow on a cylinder impulsively set in motion from rest. In this

analogy, it is assumed that the crossflow plane is swept uniformly down the length of an

inclined body at the rate Vo, cos o_. When this analogy is assumed, the value of Cdn starts

from zero (at zero time), then increases to a maximum value about 25 percent higher than

the steady-state value, then decreases to the steady-state value for laminar flow (see, e.g.,

sketch (a) from ref. 27). For turbulent flow, experiments conducted by Sarpkaya (ref. 27)

indicate that the steady-state condition is reached almost at the start of the motion. Thus,

for turbulent flow, both the steady-state assumption and the impulsive-flow assumption give

the same result. However, for laminar flow there is a difference, but this difference is not

studied in this report.

1.6

1.2

.8

.4

v

/ Circular cylinder Impulsively
started from rest (laminar flow)

Cd n

I J I I I I I
0 4 8 12 16 20 24 28

S/r = Vnt/r - (x/r) tan e

Sketch (a)

Because of spillage flow around the ends of a finite length cylinder, the value of Cdn is

less than that for an infinitely long (truly two-dimensional) cylinder in the same free

stream. Equation (2.2) should be multiplied by a proportionality factor r/, which is the ratio

of Cdn for a finite length cylinder to that for an infinite length cylinder. This factor r/,

which approaches unity as the cylinder length to diameter approaches infinity, is given from

experimental results (discussed later). In the practical use of 7?, it is assumed that the 9./d of



the cylinder is the sameasthat for the body of revolutionbeingconsidered.It is also

assumedthat the net-forceeffectof thefront andrearendflowsisapproximatelythesame

for both configurations.Thus,equation(2.2) ismodifiedto give

fv = 2rlrCdnqoo sin2 o_
(2.6)

where

1 oVoo2 _ 1 1 _ qn (2.7)
qoo = -_ 2 p Vn2 sin 2 ot sin 2 o_

Following Allen (ref. 1), the potential-flow solution of Munk and the viscous crossflow

solution are combined to determine the cross-force distribution along the body of revolu-

tion. With the potential cross force per unit length acting at 0(2 from the normal to the free-

stream direction and the viscous cross force per unit length acting normal to the longitudinal

axis, the total cross force per unit length normal to the longitudinal axis is given by

O{

f = fp cos _ + fv (2.8)

or

f - sin 2a cos ot dA
qoo 2 _ + 2rlCdn (sin2 a)r (2.9)

From equation (2.9), the equations for the normal-force and pitching-moment coeffi-

cients for bodies of revolution can be easily derived. With the normal force given by

=f£ f dx and the normal-force coefficient defined by CN = (Fn/qooAr), we obtainFn
o

Ar _ dx + Ar r dx (2.10)

Likewise, with the pitching-moment coefficient defined by

Cm = pitching moment
q ooAr X

fo _ f(x m - x)dx

q_ArX

we obtain

Cm = sin 2O_ArXCOS(a/2) ;£

Oo

dA
(x m - x)dx

2rlCdn sin 2 a
+

A,X 2 _ x)dx
F(Xm

(2.11)

9



whereA r is the reference area: X is the reference length: _ is the body length; and x m is the

axial distance from the nose to the pitching-moment reference center.

General integrated expressions for bodies of revolution at o_= 0 ° to 180 ° can be

obtained from equations (2.10) and (2.11). For the sign convention in sketch (b), Jorgensen

(ref. 9) has written the following equations for the normal-force and pitching-moment coef-

ficients:

A b

CN= Arr sin 2_'

and

o_' Ap 0 °
cos T + rlCdn Arr sin2-a' • _<a_< 180 °

V- Ab(_ - Xm! ]Cm = _-rX- - sin 2a' a' Ap (x m- Xc) sin 2 a'cos-y +  ca, x

0 ° _< a _< 90 °

(2.12)

(2.13)

Cm = - -AT sin 2c_' cos -_- + r_Cdn At- sin z or';

90 ° _<a_< 180 ° (2.14)

where A b is the body base area; Ap is the planform area; V is the body volume; x c is the

distance from the nose apex to the centroid of planform area; and a' = ot for 0°_< o__< 90 °

ando/= 180 °-afor90 °_<a_<180 ° .

Sketch (b)

90 ° < a < 180 °

10



The axial distance from the nose apex to the aerodynamic force center is then given by

Xac = CNN X (2.15)

When lift and drag coefficients are desired, they may be obtained at all a values from

the conversion expressions:

CL = CNcosa- CA sina (2.16)

CD = CNsina+ CA cosa (2.17)

Generally, it can be shown that for values of oe well removed from a = 0 ° and 180 ° precise

prediction of CA is not necessary to obtain reasonably accurate values of CL and CD.

Jorgensen (ref. 9) has suggested that, for rough engineering estimates, the axial-force

coefficients for slender bodies can be approximated by

CA _CAo_=OO cos 2 a" 0 ° _<c_<90 ° (2.18)

and

CA _ CAot=lS0O cos 2 a ; 90 ° _< o__< 180 ° (2.19)

Here cos 2 a is merely the ratio of the dynamic pressure in the axial direction to the dynamic

pressure in the free-stream direction. A more precise method is also outlined in reference 9,

along with procedures for determining CAo_=0o and CAa = 18°° for often used conical and

tangent ogive noses and flat bases.

2.2 Bodies of Circular and Noncircular Cross Section

Alone and With Lifting Surfaces

For the general case of a body alone or with lifting surfaces where the cross-sectional

shape can vary along the body length, procedures similar to those used for a body of

revolution are assumed. Both the potential and viscous separation crossflow terms in equa-

tions (2.10) and (2.11 ) for CN and Cm are generalized further.

The potential crossflow term is generalized by multiplying the value inside the integral

by the ratio (Cn/Cno)sB - the ratio of the local normal-force coefficient per unit length Cn

for the desired cross-sectional shape to the similar coefficient Cno for the equivalent circular

11



shapehavingthe samecross-sectionalarea.The necessaryratioscanbedeterminedfrom

apparentmasscoefficients(slender-bodytheory) for manycross-sectionalshapes.In 1958,

thisprocedurewasfirst shown(ref. 6) to havemerit in predictingexperimentalCN and Cm

results for slender bodies of various cross sections at supersonic speeds and angles of attack

up to about 20 ° . However, because of very limited experimental data, further evaluation

was not possible at that time.

The viscous crossflow terms in equations (2.10) and (2.11) are further generalized by

multiplying the values within the integrals by (Cn/C n ) . Here the local ratio of Cn to
o Newt

Cno at each x station is assumed to be given by Newtonian impact theory. Cdn remains as

the crossflow drag coefficient for the equivalent circular cylinder section.

With equations (2.10) and (2.11) generalized as discussed, and for positive dA/dx

values,

CN = sin 2_ cos (o_/2) dA
Ar _ dx

2r_Cdn sin 2 °_i_(_nno)N e+ Ar r dx (2.20)
wt

and

Cm = sin 2or cos (ot/2)/_(C____o)co dAArX dx (Xm - x)dx
_LP " " JI..I

2rlCdn sin 2 o_f_ (C--_---/ r(x m - x )dx
+ Ar X

(2.21 )

.1o \ "O/Newt

In equations (2.20) and (2.21), the first terms (from slender-body theory) are not applicable

as written for winged-body sections where the dA/dx values are zero or negative, and

procedures similar to those suggested in reference 38 probably should be used. Further

adaptation of this method for use with body-wing and body-wing-tail configurations is

considered in chapter 5.

In the second term of equations (2.20) and (2.21 ), there is some experimental justifica-

tion for formulating the ratio (Cn/Cno) from Newtonian theory and multiplying it by the

available experimental or theoretical crossflow drag coefficient for the equivalent circular

cross section Cdn. For subcritical crossflow Mach and Reynolds numbers, Jorgensen

12



(ref. I 1) has shown that Cn/Cno values from Newtonian theory agree reasonably well (but

somewhat fortuitously) with those from' two-dimensional tests (refs. 39-43) of elliptic

cross sections and square cross sections with rounded corners. Jorgensen's comparisons are

shown in table I. Good agreement also can be expected at high supersonic and hypersonic

crossflow Mach numbers where Newtonian theory by definition should be most applicable.

The most doubtful regimes include the transonic crossflow Mach number regime and the

supercritical Reynolds number regime. (These regimes are discussed further for circular

cross sections in the following section.)

Where reliable experimental crossflow drag data exist for a desired noncircular cross

section, these data, of course, can be used. Then the values of Cdn for the particular cross

sections can be substituted in equations (2.20) and (2.21) in lieu of the product

CA (Cn/C n ) , where C d as now written is for a circular cross section only. Of course,
_'n o Newt n

if the shape of the noncircular cross section varies along the body length, values of Cdn must

be substituted within the integral in the second term of equations (2.20) and (2.21), and a

great deal of empirical input data may be necessary for some configurations.

TABLE 1.- Cdn AND Cn/Cno VALUES FOR TWO-DIMENSIONAL CYLINDERS OF

VARIOUS CROSS SECTIONS AT a= 90 ° AS COMPUTED BY NEWTONIAN

THEORIES AND MEASURED AT SUBCRITICAL MACH AND REYNOLDS

NUMBERS

CROSSSECTION
NEWTONIANTHEORY

,0
a/b- 2

i

I_ 0 a/b.2

r-kw k,0.0
Ff-_k -0.02

l_wl Ik,O.O8
LL..__._Jk,0.24

k-0.50

NOTE-" ALL COin'S IN TABLE

CROSS SECTION, NOT

Cdn Cn/Cno

I
1.33 I 1.00

I
I

0.94110.50
0.59 I 0.22

I
I

1.651 1.75
I
I

2.00 t

1.97 I
1.89
1.68 II

1.331
I

NOD.NEWT.THEORY

FORCpstog.1.8

Cdn Cn/Cno
I

1.20 I 1.00
I
I

0.8511 0.50
0.53 i 0.22

I
I

1.49 I 1.75
I
I

1.33 1.80 I 1.33

.33 1.78 ! 1.33

.26 1.70 ' 1.26

1.14 1.51 1.14
1.00 1.20 I 1.00

I

ARE BASED ON WIDTH OF

EQUIVALENT d.

MEASURED

Udn Cn/Cno]

I I
1.20 I t.O0 1

l
I

0.70 ) 0.41
0.35 I 0.15

I
I

I.G0 1 1.89
I
I

2.05 I t.51

2.00 I .48
1.65 .22
1.12 1.85
1.20 l 1.00

I

REE

39
I
I

40,41
I 40
I
I
I 41,42
I
I
I 40

41
I 43

43

I 39
I
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2.3 Empirical Input Values

2.3.1 Crossflow drag coefficient- To compute CN and Cm for the equations derived in

the previous section, values of crossflow drag coefficient Cdn are needed for an "infinite

length" or truly two-dimensional circular cylinder placed normal to an airstream. As pre-

viously mentioned, Cdn is a function of both the Mach number and Reynolds number

components normal to the cylinder longitudinal axis, and hence for a configuration at angle

of attack it is a function of M n = Moo sin o_ and Re n = Re sin or. In these simple relations,

introduced previously as equations (2.3) and (2.4), M n is commonly called the crossflow

Mach number and Ren, the crossflow Reynolds number. For circular cylinders, necessary

"state-of-the-knowledge" plots have been prepared for the variation of Cdn with M n and

Re n (figs. 1-3).

Figure 1 shows the variation of Cdn with M n over the M n range from 0 to 8. It was

prepared from the data of references 44 through 49 and from data obtained recently by

John M. Macha in the Ames 2- by 2-Foot Transonic Wind Tunnel. Also shown for reference

are the theoretical variations predicted from Newtonian and modified Newtonian theories.

Because of the close agreement of the Newtonian values with experiment at the higher Mach

numbers, it is not surprising that computer programs utilizing Newtonian theories have been

used successfully to predict space-shuttle-booster results in wind tunnels at hypersonic Mach

numbers (see, e.g., ref. 50). Except for the transonic range, where data are very limited, the

variation of Cdn with M n is well documented in figure 1.

In the transonic range, the black symbols in figure ! represent values Of Cdn obtained

recently from pressure-distribution tests of circular cylinders of various diameters (i.9 to

5.1 cm) at crossflow Reynolds numbers from about 1.3XI0 s to 4.9X10 s. Many values of

Cdn were initially computed from the extensive pressure distributions measured by Macha

on the cylinders in the Ames 2- by 2-Foot Transonic Wind Tunnel. Because there was a

general increase in Cdn with decrease in cylinder diameter d (but not Ren) for M n values

from about 0.9 to 1.2. plots of Cdn vs. d were constructed, and values of Cdn were obtained

by extrapolating the curves to d = 0. The black symbols in figure 1 represent these extrap-

olated values of Cdn, values that should come closest to representing data for no interfer-

ence between the models and the wind tunnel. These data agree well with the rocket

14



flight-testresultsobtainedin 1953by Welsh(ref. 49), but theseor similar-sizedmodels

shouldbe testedfurther in a largertransonicwind tunnel.

As shownin figure1, there is a critical crossflowReynoldsnumbereffect that can

drasticallylower the valuesof Cdn at M n below about 0.5. For M n less than about 0.5, if

the crossflow Reynolds number Re n exceeds the critical value of about 2× l0 s , the value of

Cdn decreases considerably. This variation is shown in greater detail in figures 2 and 3.

Figure 2 gives the variation of Cdn with Re n for M n less than about 0.4. It has been

well documented over the last 60 years (e.g., refs. 39, 43, 45, 51 ) that Cdn = 1.2 tor laminar

boundary-layer flow and separation just before the critical Reynolds number of about

Re n = 2X10 s. At aboutRe n = 5X10 s there is evidence (e.g., refs. 52-54) of laminar

boundary-layer flow around the front of the cylinder to an angular position of about 80 ° or

90 °, where the flow separates, undergoes transition, and reattaches at an angular position of

about 110 ° to form a laminar separation bubble. Then the turbulent flow separates at some

position downstream (an angular location of about 130°). With a further increase in Rey-

nolds number into the supercritical regime, the bubble decreases in size until the transition

to turbulent flow moves upstream of the location of laminar separation, and the bubble

disappears (ref. 54). From the low Cdn value between about 0.15 and 0.30, Cdn increases

gradually, at least for an increase in Re n up to about 5× 10 6 • The supercritical Reynolds

number regime has only been investigated recently in any detail (refs. 43 and 52-54), and

there is still considerable uncertainty in the magnitude and trend of Cdn with Re n and M n.

The shading in figure 2 indicates the approximate spread or uncertainty in Cdn based on

known data.

Jones, Cincotta, and Walker (ref. 54) probably have made the most detailed study of

circular cylinders in supercritical flow. With the use of freon gas to obtain high Re n, they

have shown that there is an effect of M n on the variation of Cdn with Re n. Figure 3 (taken

from ref. 54) summarizes their Cdn results for M n - 0.25 to 0.50. The reader is referred to

reference 54 for their interpretation of these Cdn results based on pressure-distribution and

visual-flow studies.

For noncircular bodies, as mentioned in section 2.2, experimental values of Cdn for

noncircular instead of circular cross sections can be used with slight modification to equa-

tions (2.20) and (2.21). These data are generally not available for crossflow Mach numbers
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abovecritical.However,somedataareavailablefor subcriticalcrossflowMachnumbers,and

thesedatashouldbe usedif thecrossflowReynoldsnumberRe n exceeds the critical value

(the Re n where Cdn drops rather drastically with a slight increase in Ren). In table 2 some

TABLE 2.- REFERENCES FROM WHICH EXPERIMENTAL VALUES OF Cdn VS

Re n CAN BE OBTAINED FOR VARIOUS CROSS SECTIONS AND FLOW

DIRECTIONS

References

4 4
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references are listed from which experimental values of Cdn versus Re n can be obtained for

various cross sections and flow directions. It should be noted that most experimental values

of Cdn are based on cross-sectional width w and must be multiplied by w/d, where d is the

diameter of the equivalent circular cross section.

2.3.2 Crossflow drag proportionality factor- In the equations used to compute CN

and Crn, 77is the crossflow drag proportionality factor, that is, the ratio of the crossflow drag

coefficient for a finite-length cylinder to that for an infinite-length cylinder. Cylinder drag

coefficients from which values of 7/ can be determined have been measured (to the author's

knowledge) only at very low subsonic Mach numbers (refs. 56 and 57).

Values of 77for circular cylinders at very low crossflow Mach numbers (from ref. 56) are

plotted as a function of length/diameter ratio in figure 4. Values of 7/for flat plates are also

plotted, but as a function of plate length/width ratio. The values for the flat plates are only

slightly less than those for the circular cylinders. Thus, it is likely that figure 4 can be used

to estimate values of r/ for many cross sections varying from circular to flat. However, these

values may be acceptable only for very low crossflow Mach numbers.

An indication of the variation of 77with crossflow Mach number M n can be obtained

by computing values of r/ from high-or CN data (ref. 16) for slender bodies of revolution.

From equation (2.1 2),

CN - sin 2a cos (or/2) (Ab/Ar)

71Cdn = (Ap/Ar)sin 2 _ (2.22)

For two bodies of fineness ratio 10 and 12 (sketched in fig. 5), the variation ofrlCdn

with M n (for M n = 0.4 to 1.6) has been computed from equation (2.22) with the use of CN

data for values of o_ from about 45 ° to 60 °. As shown in figure 5, the results for the two

bodies agree closely. Now with the variation of Cdn with M n in figure 1 and the variation of

rtCdn with M n in figure 5, the variation of r/ with M n has been computed and the results

plotted in figure 6. (The circular symbols denote the computed values over the M n range

from 0.4 to 1.6; the square and diamond symbols represent values of 77 for very low

crossflow Math numbers obtained from fig. 4)

For most supersonic and hypersonic values of M n, 77probably can be assumed to be

unity, an assumption indicated as being essentially correct from past investigations (e.g.,
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refs.3, 6, 7, and9). Thegreatestuncertaintyappearsto bewithin the transonicM n range,

and here further research is desirable. In this study, however, figures 5 and 6 are used in lieu

of better information.

2.4 Formulas and Values of (Cn/Cno)sB and (C"/Cno)----Newt for Various Cross Sections

To use equations (2.20) and (2.21) for computing CN and Cm, ratios of the section

normal-force coefficients (Cn) to those for the equivalent circular sections (Cno) must be

determined. The ratios (Cn/Cno)sB from slender-body theory are used in the first term of

each equation, and the ratios (Cn/C n ) from Newtonian theory are used in the second
o Newt

term.

Formulas of (Cn/Cno)sB and (Cn/Cno)Newt are now presented for some of the more
general cross sections encountered in missile and aircraft aerodynamics. Then, for several

and (Cn/C n ) are plotted and compared.sample cross sections, values of (Cn/Cno)sB O Newt

2.4.1 kbrmulas of (Cn/Cno)SB- From slender-body theory (e.g., refs. 58-61), the

ratio of Cn for a winged-body cross section to that for the equivalent (same area) circular-

body cross section can be determined for many cross-sectional shapes. In ref. ]1,

(Cn/Cno)sB expressions are determined for winged-circular and winged-elliptic cross sections

(see sketches (c), (d), anti (e)).

,t ,t
(c) (d) (e)

Sketches (c), (d), and (e)

For a winged-circular cross section with the wing planform perpendicular to the cross-

flow velocity Vn (sketch (c)),

(2.23)

18



For a winged-ellipticcrosssectionwith thesemimajoraxisa and wing planform per-

pendicular to the crossflow velocity Vn (sketch (d)),

ab
B

_ __ (kl 2 + a 2) (2.24)

where

(a + b) 2

kl = °l 4ol

l(s b z a 2 )o, +,/s s + _

For a winged-elliptic cross section with the semiminor axis b and wing planform per-

pendicular to the crossflow velocity Vn (sketch (e)),

ab
B

__ __ (k2 2 -{- b s ) (2.25)

where

k s : 0 2
(a + b) 2

4o 2

,(s a2b2)o2: +,/s2+ -

For an elliptic cross section without a wing (e.g., ref. 37),

(_no )s B _ a b
b c°s2 _ + a- sins ¢ (2.26)

where 4_ is the angle of roll about the body longitudinal axis, being 0 _'with the semimajor

axis a perpendicular to the crossflow velocity and 90 ° with the semiminor axis b perpendic-

ular to the crossflow velocity (see sketches (d) and (e)).

2.4.2 Formulas of (Cn/Cno)Newt-- From Newtonian impact theory, (Cn/Cno)Newt

expressions also have been derived for winged-circular and winged-elliptic cross sections (see

appendix A).

For a winged-circular cross section with the wing planform perpendicular to the cross-

flow velocity Vn (sketch (c)), we obtain, from equation (A10),
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(2.27)

For a winged-ellipticcrosssectionwith the semimajoraxisa and wing planform per-

pendicular to the crossflow velocity Vn (sketch (d)), we obtain, from equation (A16),

(_no)Ne- 3 V_b{[ -b2/a2 Ib (1 _)] 1 s }2 1 -- (b2/a _ )13/2 log + + + - - 1i - (b2/a 2) a
wt

(2.28)

For a winged-elliptic cross section with the semiminor axis b and wing planform

perpendicular to the crossflow velocity Vn (sketch (e)), we obtain, from equation (A21),

2 [(a2/b 2) 113/2 tan-I + - - 1 (2.29)- (a2/b 2) - 1 b
ewt

From Newtonian impact theory, an expression for (Cn/Cno)""Ne also has been derivedwt
for winged-square cross sections with rounded corners (sketch (f)). From equation (B15),

 -s-q
 -w-q

_3
0_<k_< 0.5 (2.30)

where the equivalent diameter (from eq. (Bl 2)) is

d= 2wV tl- (-4- _r)k2 (2.31)

Sketch (f)

2.4.3 Values of (Cn/Cno)sB and (Cn/Cno)ewt From equations (2.23) through

(2.29), values of (Cn/Cno)s B and (Cn/Cno)ewt were computed for circular and elliptic

cross sections alone and with wings. The results are plotted and compared in figures 7

through 10.

In figure 7, the variation of (Cn/Cno) with axis ratio a/b is given for an elliptic cross

section without wings. As previously noted in reference 9, values of (Cn/Cno) from
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slender-bodytheoryare reasonablycloseto thosefrom Newtoniantheory for manya/b

values of interest.

In figure 8, the variation of (Cn/Cno) with the ratio of wing semispan s to body radius

r is given for a winged-circular cross section. For sir < 2, the values from both theories are

reasonably close, but with further increase in s/r, the values of (Cn/Cno)sB greatly exceed

those of (Cn/Cno)Newt.

In figure 91 values of (Cn/Cno) are presented for a winged-elliptic cross section with the

semimajor axis a perpendicular to the crossflow velocity Vn. For the axis ratios ofa/b = 2

and 3, the figure gives the variation of (Cn/Cno) with the ratio of semispan s to semimajor

axis a. As either a/b or s/a increases, the disagreement between the results from the theories

increases.

In figure 10, values of (Cn/Cno) are presented for a winged-elliptic cross section with

the semiminor axis b perpendicular to the crossflow velocity Vn. For axis ratios ofa/b = 2

and 3, the variation of (Cn/Cno) with s/b is given. There is closer agreement between the

values computed from the two theories for this cross-sectional arrangement than for the

arrangement where the semimajor axis and wing are perpendicular to Vn.

Table 3, taken from reference 9, shows the variation of (Cn/Cno)Newt with corner

rounding k for square cross sections. The values of Cn/Cno computed from slender-body

theory are reasonably close to those computed from Newtonian theory (eq. (2.30)).

TABLE 3.- Cn/Cno FROM NEWTONIAN THEORY FOR SQUARE CROSS

SECT1ONS WITH ROUNDED CORNERS

k 0 0.05 0.1 0.2 0.3 0.4 0.5

Cn/Cno 1.33 1.29 1.25 1.17 1.11 1.05 1.00

Corresponding values from slender-body theory vary from 1.19 at k = 0 (no corner

radius) to 1.00 at k = 0.5 (completely circular cross section).

2.5 Relative Influence of Crossflow Terms

It is interesting to examine briefly the relative influence of the potential and viscous

crossflow terms in the equations for CN and Cm. For demonstration, Jorgensen (ref. 9)
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comparedthe magnitudesof the terms for an ogive-cylinderbody of finenessratio 11

(£N/d= 5) at o_= 0 ° to 180 ° and Moo = 2.9. The computed values (by eqs. (2.12) to (2.14))

are presented in figure 11. For this body, the viscous crossflow term contributes most of the

normal force at high values of o_and, of course, all of the normal force at o_= 90 °. Although

the slender-body potential term contributes relatively little to CN at high a, it has a signif-

icant influence on Cm.

The results in figure 11 are indicative of those computed for most slender bodies

(ref. 9). However, as shown in chapter 5, the relative contributions of the crossflow terms

can be modified considerably with the addition of thin lifting surfaces (wings and tails) to a

body.

22



CHAPTER3

METHODAPPLIEDTO BODIESOF REVOLUTION

In recentyears,therehasbeenincreasedinterestin the basicaerodynamicsof slender

bodiesof revolutionbecauseof emphasisonachievingmoremaneuverabilityfrom missiles.

Somedesignsthatusethrust-vectorcontrolsystemsarebeingconsideredfor missileflight at

anglesof attackrangingfrom 0° to 180° (e.g.,refs.13, 15,and62).Wewill nowassessthe

predictionmethodof chapter2 by comparingpredictedwith measuredlongitudinalaero-

dynamiccoefficientsfor variousbodiesof revolution.

3.1Cone-CylinderandOgive-CylinderBodiesatMoo = 2.9

We will compare predicted longitudinal aerodynamic coefficients with those measured

by Jernell (ref. 63) for a series of three cone-cylinder and four ogive-cylinder bodies at

o_= - 5° to 180 °. The free-stream Mach number is about 2.9 (Jernell quotes 2.86), and the

Reynolds number based on body diameter is about 1.25X l0 s . The bodies with various nose

and aftersection fineness ratios were tested in the NASA-Langley Unitary Plan Wind Tunnel.

Figure 12 shows the seven bodies considered along with values of the geometric param-

eters required to compute the aerodynamic characteristics. For the cone-cylinder bodies

(numbers 1-3), all of the geometric parameters are easily computed, but for the bodies with

tangent ogive noses (numbers 4-7) the required values of Ap/d 2 , V/d 3 , xc/d, and As/d2 are

not so easily obtained. Some convenient formulas (from ref. 9) for computing these param-

eters for tangent ogives are given in appendix C.

Equations (2.12) to (2.15), (2.18), and (2.19), along with the procedure outlined in

chapter 2, have been used to compute the variation of CN, CA, Cm and Xac/f_ with _ for the

seven bodies considered. The values of CAo_=0o and CAa = 18°o used in equations (2.18)

and (2.19) were computed in reference 9 with the assumption of turbulent boundary-layer

flow. (Jernell (ref. 63) states that "boundary-layer transition was effected" by artificial trips

throughout the a range.) The values include the contributions of fore pressure, base pres-

sure, and the turbulent skin friction. The reader who wishes to make similar calculations is

referred to reference 9. No attempt was made to estimate effects of wind-tunnel support

interference.
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In figures13 to 16, computed values of CN, CA, and Cm as a function of o_ are

compared with the experimental results for the seven bodies. Generally, there is close

agreement of the computed with the measured results, especially in the variation of CN and

Cm with o_. As expected, because of the approximation formulas used to predict CA with a,

the poorest agreement is between the predicted and measured values of CA .

It is satisfying to find that effects of afterbody fineness ratio, nose fineness ratio, and

nose shape on CN and Cm are predicted so well. Generally the magnitudes of CN and Cm

increase with an increase in fineness ratio, just as the computed results predict. Figure 13

shows the effect of afterbody fineness ratio for cone-cylinder bodies, all with fineness-

ratio-3 conical noses. Likewise, figure 14 shows the effect of afterbody fineness ratio for

ogive-cylinder bodies, all with fineness-ratio-5 ogival noses. Figure 15 shows the effect of

nose fineness ratio for ogive-cylinder bodies, and figure 16 shows the minor effect of change

in nose shape from conical to ogival for a given nose fineness ratio of 3.

In figure 17, computed positions of aerodynamic normal-force center (symbols) are

compared with measured positions (lines from ref. 63) for the seven bodies at Moo = 2.9.

The positions, Xac/_ , are measured from the nose tip of each body in terms of the body

length. As for the CN and Cm results, the agreement of the computed with the measured

values is reasonably close, especially for ot near 90 °. Note that symbols are used to denote

computed values because only lines are given in reference 63 to denote the measured results.

To assess the analytical method, plots of Cm versus o_may be omitted if plots of both

CN and Xac versus o_are included. Hence, for conciseness, plots of Cm versus a are omitted

in the remainder of this study. Because precise prediction of CA versus o_ is beyond the

scope of this study, plots of CA versus a are also omitted.

3.20give-Cylinder Bodies at Moo = 0.6 to 2.0

As shown in the previous section, the analytical method predicts the aerodynamic

coefficients reasonably well Ior various cone-cylinder and ogive-cylinder bodies at a super-

sonic Mach number of 2.9. We will now assess the method of predicting the CN and Xac

results for four ogive-cylinder bodies at a = 0 ° to 60 ° throughout the Mach number range

from 0.6 to 2.0 (Moo = 0.6, 0.9, !.2, and 2.0).
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Sketchesof the four bodiesconsideredareshownin figure 18.BodiesN 2 C l and N7 Ca

were previously tested by Jorgensen and Nelson (ref. 16) in the NASA-Ames 6- by 6-Foot

Wind Tunnel. Recently, these same bodies were retested in the same tunnel at Moo = 0.6.

They were also retested at Moo -- 0.6, 0.9, 1.2, and 2.0 with cylindrical extensions attached

to the aftersections. Cylinder C2, two diameters long, was attached to body N 2 Cl to form

body N2 C1 C2, and cylinder Cs, four diameters long, was attached to body N7 C1 to form

body N7C1Cs. Thus, the bodies include nose fineness ratios of 2.5 and 3.5 (noses N_ and

N 2), aftersection fineness ratios of 7, 9, and I I (aftersections C_, C1 C2, and C_ Ca), and

overall fineness ratios of 9.5 (N7 Cl ), 10.5 (N2 C1 ), 12.5 (N2 C1 C2 ), and 13.5 (N7 Cl Cs ).

In figures 19-22, computed values of CN and (_ - Xac)/d as a function of c_ are com-

pared with the measured results for the four bodies. The aerodynamic normal-force center,

(_ - Xac)/d, is measured forward on each body from its base in terms of its body diameter.

For bodies N2C_ and NTC_ (figs. 19 and 20, respectively), the results for all Mach numbers

are compared on the same plots, and one can observe, at a given value of a, the variation of

CN and (_-Xac)/d with Moo. For the longer bodies, N2C1C2 (fig. 21) and N7CICs

(fig. 22), the results for each Mach number are compared on a separate plot. With these

separate plots, there is less confusion in comparing predicted with measured values of

(_- Xac)/d.

Generally, the variation of CN with ot is predicted closely for each body throughout the

c_ and Moo ranges considered. At the lowest Mach number, Moo = 0.6, the CN values previ-

ously measured (ref. 16) for the shortest body, N7 C1, are believed to be erroneous (fig. 20).

The values from the retest agree closely with the predicted results.

The aerodynamic normal-force centers are predicted best for the supersonic Mach

numbers. Generally, for the subsonic Mach numbers, the predicted aerodynamic centers are

more rearward on the bodies than the measured centers. For all Mach numbers and low

values of o_, the agreement of the predicted with the measured positions probably should be

better than shown. The force and moment balance located inside each body was chosen to

measure the large normal forces and pitching moments expected over the high c_ range.

Thus, the accuracy of the experimental aerodynamic centers (determined from Cm/CN) at

the low values of a is somewhat less than at the high values, and there is more scatter in the

data.
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In this study, we haveconcentratedprimarily on predicting the static aerodynamic

characteristics for bodies at high angles of attack. For bodies at low angles of attack, more

theoretically exact prediction methods have been proposed. For example, for angles of

attack less than about 20 °, Perkins and Jorgensen (ref. 4) have shown that the agreement of

theory with experiment at supersonic Mach numbers can be improved by replacing slender-

body potential theory (e.g., the first term in eq. (2.10)) with Van Dyke's hybrid theory

(ref. 64) or Tsien's linearized theory (ref. 65). They also suggest the use of an empirical

modification to the viscous crossflow theory (e.g., the second term in eq. (2.10)). In this

modification, an experimentally determined correlation curve for the distribution of the

crossflow drag coefficient along the body length is used when there is laminar crossflow. It

is questionable whether the extra computation needed in these more detailed methods is

warranted for most engineering studies. However, if an accurate loading distribution over a

body length is desired, a more detailed method should be considered (ref. 4).

3.3 Predicted Effect of Change in Crossflow Reynolds Number

from Subcritical to Supercritical

At present there is a general lack of aerodynamic data for which predicted results can

be compared for bodies of revolution at supercritical crossflow Reynolds numbers and

subcritical crossflow Mach numbers. Jorgensen (ref. 9), however, has computed results

which demonstrate what might be expected for a slender body of revolution. The body

chosen for study consists of a tangent ogive nose of fineness ratio 5 with a cylindrical after-

section of fineness ratio 6 (body 7 in fig. 12).

For free-stream (and crossflow) Mach numbers less than about 0.4, the variation of CN

and Xac/_ with _ has been computed for free-stream Reynolds numbers of l0 s, 106, and

107 , and the curves are shown in figure 23. There is a significant effect of Reynolds number

on both CN and Xac/_ throughout most of the o_ range. These curves, of course, reflect the

strong influence of crossflow Reynolds number Re n on crossftow drag coefficient Cdn for

two-dimensional circular cylinders (see fig. 2).

As shown in figure 2, Cdn for a circular cylinder drops considerably as Re n increases

from 10 s (subcritical) to 106 (supercritical), and then there is a gradual rise as Re n increases

from 106 to 107 (in the supercritical range). There is much more uncertainty in the magnitude
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of Cdn at supercritical Re n (such as 106 and 10 7) than at subcritical Re n (values less

than about 2X 10 s ), and the shading in figure 2 indicates the uncertainty because of scatter

in known data.

In figure 23, the shaded bands in the CN and Xac/£ curves for Re = 10 6 reflect the

uncertainty in these curves resulting from the scatter in the Cdn data shown in figure 2. It is

clearly evident, however, that this uncertainty in the curves is relatively small compared

with the large effect of change in Reynolds number.

Figure 23(b) shows the ratio of CN for the body at Re = 10 6 and 107 to CN for the

body at the subcritical Re of l0 s . With this figure the effect of Re can be studied through-

out the a range: for example, at o_ near 90 °, the body at Re = 106 develops only about

25 percent of the CN developed at Re = l0 s , but at o_< 10 °, 100 percent of the CN is

developed. Similar study of the movement of Xac/£ with change in Re can be made with the

use of figures 23(c) and (d).

Although no experimental data are available with which to compare these predicted

effects for bodies of revolution, there are limited data for an early version of a noncircular

space-shuttle body (ref. 66). Jorgensen (ref. 9) predicted some experimental trends (ref. 66)

showing the decrease in CN with ot that results from an increase in crossflow Reynolds

number from subcritical to supercritical.
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CHAPTER4

METHODAPPLIEDTO BODIESOF ELLIPTIC CROSSSECTION

In this chapter,wecomparepredictedwith measurednormal-forceandnormal-force-

centercharacteristicsfor threebodiesof elliptic crosssectionat u = 0° to 60° andMoo-- 0.6

to 2.0. First, however,we introducethe bodiesconsidered,reviewthe experimentaltest

conditions,andpresenttheequationsusedto computeC V and Cm for each body.

4.1 Bodies Studied and Tests at Moo = 0.6 to 2.0

Figure 24(a) shows the three bodies of elliptic cross section considered here. Planform

views of the bodies as they were oriented (in five different configurations) for the tests are

shown in figure 24(b). All of the bodies were tested previously and the results presented in a

data report (ref. 18).

The basic circular body B I consists of a circular-arc tangent-ogive nose of fineness

ratio 3 followed by a cylindrical aftersection of fineness ratio 7. Bodies B2 and B3 have

elliptic cross sections, and they have the same length and axial distribution of cross-sectional

area as BI. Hence the fineness ratio of _/d = 10 for B1 is also the equivalent fineness ratio

for B2 and B3, and all bodies have equal volumes. For B2, the ratio of the semimajor to the

semiminor cross-sectional axis (a/b = 2) is held constant along the body length. Bodies B_

and B2 were investigated in 1958 (ref. 6) only for c_ = 0 ° to 20 ° and Moo = 2 to 4. Body B3

(new to the investigation in ref. 18) consists of the same nose shape as B2 but has an

afterbody section of variable a/b over four body diameters in length and a constant a/b = 2

over the rear three body diameters (see fig. 24(a)). Photographs of B3 in figure 25 enable

one to establish a clearer mental image of this more complex body.

Six-component aerodynamic force and moment coefficients were measured in the

study of reference 18 for these bodies in the Ames 6- by 6-Foot Wind Tunnel. However, in

this chapter, only the variation of CN and (_ - Xac)/d with o_is considered.

All bodies were tested at Moo = 0.6, 0.9, 1.2, 1.5, and 2.0 and ot = 0 ° to 58 °. For the

data used here, the Reynolds numbers, based on base diameter, are 6.5X l0 s at Moo = 0.6

and 0.9 and 3.8×10 s at Moo = 1.2, 1.5, and 2.0. The elliptic bodies were tested at _ = 0 °

(flattest side of nose pitching against the flow) and 90 ° (see fig. 24(b)).
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4.2 EquationsUsedto ComputeCN and Cm for Each Body

For the general case of a slender body in which the cross-sectional shape varies along

the length, the normal-force and pitching-moment coefficients can be computed from equa-

tions (2.20) and (2.21):

/9_(_no)s B 2rlCdnSin2cx
CN = sin 2or cos (or/2) Cn dA

Ar _ dx + Ar fo _ (C_o )Newt
rdx

(4.])

and

sin 2a cos (c_/2) Cn dA

Cm = ArX --_ (x m - x)dx
SB

2rlCdnSin2_fo_(-C---n_)N r(x m x)dx+ Ar X -
ewt

(4.2)

The axial distance from the body base to the normal-force center (see sketch (g)) is

then given in terms of the body diameter by

(_- Xac) Cm (_- Xm)- + (4.3)
d CN d

oo
<7

Sketch (g)
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(Cn/Cno)Newt

As previouslydiscussed,(Cn/Cno)SBin equations(4.1) and(4.2)is the ratio of the
local normal-forcecoefficientfor the noncircularcrosssectionto that for the equivalent

(samearea)circularcrosssectionasdeterminedfromslender-bodytheory.Thesimilarratio

isdeterminedfrom Newtonianimpacttheory.Fromequation(2.26),

G/' _ a b
b c°sZ _ + -- sin2 4_ (4.4)

d

where 4_ is the angle of roll about the body longirudinal axis, being 0 ° with the semimajor

axis a perpendicular to the crossflow velocity and 90 ° with the semiminor axis b perpen-

dicular to the crossflow velocity (see sketches (h) and (i)).

Vn _ _=0 ° V n

(h) (i)

Sketches (h) and (i)

From Newtonian theory, for the semimajor axis a perpendicular to the crossflow

velocity Vn, equation (2.28) redtlces to

- (h2/a z 13/2 log + +- 1 - (b2/a 2)
ewt

(4.5)

For the semiminor axis b perpendicular to the crossflow velocity Vn, equation (2.29)

reduces to

Cn = 3 'a II(a2/b_)-1] 3,2 tan-
ewt

(a 2Ib 2 ) - 1
(4.6)

For the bodies of this investigation, equations (4.1) and (4.2) can be simplified by

integration. The simplified equations, which were used to compute CN and Cm values for
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eachbody,arepresentednext. In all the CN and Crn equations, empirical input values of

and Cdn from chapter 2 are used.

4.2.1 Equations for bodies with constant a/b cross sections (bodies BI and Bz)- Both

bodies B_ and B2 have cross sections of constant a/b over the body length. For this

condition, equations (4.1) and (4.2) reduce to

CN = (Art sin 2o_ cos _]_CNo--]S B

and

Cm _

@
_Cdn _ (4.7)

:ocos
SB

Cm
+ Ap(XmxXc) sin2o_l(_mo)Newt (4.8)['7CanZ

where

B SB

Cm Cn
(-_O)Newt = (_mo )Newt = (%)Newt

4.2.2 Equations for body with variable a/b cross sections (body B3)- Body 3 has a

midsection length of variable a/b, but the equivalent body of revolution is Bj for which

dA/dx = 0 rearward of the nose-cylinder junction. Thus, equations (4.1) and (4.2) reduce to

A(Arr 2)(C_No) S 2r_CdnSin2°_ if_(%)NeCN = sin 2_ cos + Ar r dx (4.9)

Bnose wt

and
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where

and A bnos e

C m
V - Ab(_ - Xrn _= il-r-X- nose (sin 2cxc°s 2)(%)SBnos e

+ ArX r(x m - x)dx (4.10)
o ewt
0

(_NN-o-)SBnose= (_-_mmo)SBnose = (_t_O )SBnose

= A b. Also, for the bodies studied,

IV-Ab(_-Xm)_l fV-Ab(9"-Xm)lJn°se=  rrX

Some potential or inviscid normal force can be expected intuitively to be carried over

past the nose shoulder of body B3, even though the approximate slender-body term gives

zero normal force over the aftersection. For body B 3 at _ = 90 ° (fig. 24(b)), the span

increases with length past the nose shoulder, and it might seem reasonable to compute the

slender-body terms for CN and Cm based on the maximum span (or base) geometry. For

this estimation,

CN = sin 2o_ cos C_-

b

+ Ar
o ewt

rdx (4.11)

and

Cm = - Ab(9_- x m 2aAr X !] (sin

+

ArX ewt

r(x m - x)dx (4.12)
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where

Bb (C-m_)SB b B b

4.3 Comparison of Computed With Measured Normal-Force and

Normal-Force-Center Characteristics

In figures 26 through 28, computed values of CN and (_ - Xac)/d versus o_ are com-

pared with measured values (from ref. 18) for the bodies studied. The comparisons are made

for the bodies at o_ -- 0 ° to 60 ° and free-stream Mach numbers of 0.6, 0.9, 1.2, 1.5, and 2.0.

4.3.1 Bodies with constant a/b cross sections (bodies B_ and B2)- Generally, there is

reasonably good agreement in figure 26 of the computed with the measured results for

bodies B_ and B2 (bodies of constant a/b along the length). The agreement is, however,

better at the supersonic Mach numbers than at the subsonic. These comparisons, along with

previous successful comparisons in chapter 3, tend to validate the prediction method as a

useful tool in body aerodynamic studies, at least for bodies with circular and elliptic cross

sections of constant a/b.

4.3.2 Body with variable a/b cross sections (body B3)-- As for bodies B_ and B2, the

predicted characteristics for body B3 (with variable a/b) agree reasonably well with the

measured results (fig. 27). However, the prediction of CN generally is not as close as for bodies

Bl and B2. The prediction of (_ - Xac)/d at high o_ is remarkably close, especially at super-

sonic Mach numbers. This close prediction of (_- Xac)/d, however, might be somewhat

fortuitous since the prediction of CN is not nearly as close.

The prediction of CN with o_ is least accurate for body B3 oriented at 4) = 90 °. Gen-

erally, for this case, CN is underpredicted at the lower values of _ throughout the Moo range.

At the subsonic values of Moo, CN is underpredicted over the entire c_range studied.

Note that these predictions were made with equations (4.9) and (4.10), which do not

account for any potential or inviscid lift rearward of the nose section. Intuitively and

analytically (ref. 64), some inviscid normal force can be expected to be generated rearward

of the nose. This is especially true for body B 3 at 4) = 90 ° because the span increases with

length past the nose, and it might seem reasonable to estinaate the slender-body
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potential-flowterms for CN and Cm based on the maximum spa_ (see eqs. (4.11) and

(4.12)). When the maximum span estimate is used, the prediction of CN wltn a Improves

somewhat (see fig. 28). However, the prediction of (_ -Xac)/d with a deteriorates, since the

predicted values of (£ - Xac)/d move well forward of the measured values (fig. 28).
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CHAPTER5

METHODAPPLIEDTO BODY-WINGAND BODY-WING-TAILCONFIGURATIONS

In this chapter,wecomparepredictedwith measurednormal-forceandnormal-force-

centercharacteristicsfor threebody-wingconfigurationsandthreebody-wing-tailconfigura-

tionsat 0_= 0° to 60 ° and Moo = 0.6 to 2.0. First, however, we introduce the configuration

models tested, review tile experimental test conditions, and present the methodology used

to compute CN and Cm for each model.

5.1 Configurations Studied and Tests at Moo = 0.6 to 2.0

Many body-wing and body-wing-tail model combinations have been tested, and the

data are reported in references 20 and 21. Planform views of the model components tested

in the many model combinations are shown in figure 29. These components include a basic

circular body BI, an elliptic body B2 with a/b = 2, five flat-plate wings (W_ to W s ), and a

combination horizontal and vertical tail T. The bodies B, and B2 are two of the bodies con-

sidered in chapter 4 (see fig. 24(a)). All the wings were designed to have the same planform

area (16 d 2) if the wings extended into the body BI to the axial centerline. Based on the

phantom wing chord at the body centerline, the taper ratios for wings W_, W2, and W3 were

0, 0.25, and 0.50, respectively (fig. 29(a)). They were also 0.25 for W4 and Ws (fig. 29(b)).

Wings Wl, W2, and W3 (fig. 29(a)) had an aspect ratio of about 4; wings W4, W2, and Ws

(fig. 29(b)) has aspect ratios of about 5, 4, and 3, respectively. Pertinent planform dimen-

sions of the exposed parts of the wings are given in tables in figure 29. The tail dimensions

are given in figure 29(a).

The tests (refs. 20 and 21) were conducted in the Ames 6- by 6-Foot Wind Tunnel at

ot = 0 ° to 58 ° and Moo = 0.6 to 2.0. The Reynolds number, based on body diameter d,

was about 4× 10 s .

Results from these tests (refs. 20 and 21 ) showed that changing wing taper ratio from 0

to 0.5 changed the aerodynamic characteristics very little. Also, changing wing aspect ratio

from 3 to 5 changed the aerodynamic characteristics very little. Thus, to achieve more

conciseness in the present investigation, only three body-wing configurations and three

body-wing-tail configurations were considered.
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Planformviewsof the configurations studied in the present investigation are shown in

figure 30: the basic circular body BI with wings of aspect ratio 3 and 4 (W s and W2,

respectively) and the elliptic body B2 with the wing of aspect ratio 3 (I_'s ). These configura-

tions (B_ Ws, B_ W2, and B2 Ws ) were also investigated with the tail T attached (configur-

ations BI Ws T, Bl W2 T, and B2 Ws T).

5.2 Methodology Used to Compute Qv and Cm

From equations (2.20) and (2.21), we obtain

Ar _ dx
B

o

2rlCdnSin2a_o'_(_no)N rdx+ Ar
ewt

(5.1)

and

Cm
sin 2o_ cos (or/2)

Arx f_ C_ dA-_ (x m - x)dx

0

+ ArX _n_ r(x m - x)dx
o Newt

(5.2)

The first terms represent the CN and Cm values from slender-body potential-flow

theory; the second terms represent the values from the viscous crossflow method modified

by Newtonian theory. The first terms are not applicable, as written, for body-wing sections

where the body dA/dx values are zero or negative. Also, for body-wing and body-wing-tail

configurations, more comprehensive methods from potential theory are available.

For this study, the first-term (potential-flow) contributions to CN and Cm were com-

puted from the linear method presented in NACA Report 1307 (ref. 38). This method,

referred to as the N-K-P method (for Nielsen, Kaattari, and Pitts), is restricted to bodies of

circular cross section with wings and tails that do not have swept-forward leading edges or

swept-back trailing edges. It is further restricted to small angles of attack and small angles of
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wingandtail incidencein whichthe forcesarelinearwith angle.To obtainthewing-body

interference,certainfactorsaredefinedthat aretheratiosof the lift on thecomponentsin

combinationto the lift on the wing alone. These ratios are obtained primarily by slender-

body theory, but the wing lift is obtained by linear potential theory. Wing-tail interference

is treated by assuming one completely rolled-up vortex per wing panel and evaluating the

tail load by strip theory.

To combine the N-K-P method with the crossflow method, the N-K-P potential terms

must be multiplied by a correction factor (sin 2o_)/2a to produce a more correct type of

nonlinear behavior to these terms and to eliminate the potential contribution as ot _ 90 °.

With this modification,

2rlCdn sin 2 ot {Cn_ rCN = (CN)N_K_ P sin 2or + Cn dx (5.3)
2_ A r _O]Newt

0

and

Cm = (Cm)N_K_ P sin 2or + r(x m - x)dx (5.4)
2or A rX

et x O/Newt
0

Since the N-K-P method is restricted to bodies of circular cross section with wings and

tails, a further assumption must be made to estimate potential theory values of CN and Cm

for noncircular bodies with wings and tails. The local widths of the noncircular body in

planform are replaced by the local diameters of a circular body, thus keeping the overall

wing and tail spans constant (see sketch (j)). The crossflow method, of course, requires no

such assumption for noncircular bodies.

BzW5T

/ f Assumed

circularbody
for N-K-P

method

Sketch (j)
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For the way in which tile crossflow method is formulated in chapter 2, values of

crossflow drag coefficient Cdn for a circular cylinder are used. As shown in figure 1, there is

considerable variation of Cdn with crossflow Mach number M n tor values ofM n from about

0.4 to 3. Also, for M n less than about 0.5, there is considerable change in Cdn as the

crossflow Reynolds number Re n exceeds the critical value of about 2×10 s (figs. 2 and 3).

These variations of Cdn with M n and Re n may be expected for near-circular bodies, but

surely not for very flat bodies or winged bodies. From the data available, values of Cdn for

flat bodies and plates do not appear to change nearly as appreciably with M n and Re n over

the ranges shown in figures 1 and 2 (see, e.g., refs. 41,66, and 67). Thus, for the body-wing

configurations, it is likely that a constant value of Cdn will give closer agreement of theory

with experiment, especially at a where M n is near or in the transonic regime.

For flat-faced, two-dimensional configurations, reasonable values of crossflow drag

coefficient can be computed from Newtonian or modified Newtonian theory (see, e.g.,

table 1 and ref. 66). For circular cylinders at low subsonic and hypersonic M n, values of Cdn

computed from Newtonian or modified Newtonian theory also agree reasonably well with

experiment (see fig. 1). in this study, modified Newtonian theory is used to compute the

circular-cylinder Cdn value that is substituted into equations (5.3) and (5.4).

From modified Newtonian theory,

2

Cdn = _ Cpstag

= 1.2 for Cp = 1.8
stag

ForM n > about 4, Cpstag_ 1.8 from perfect-gas relations (e.g., ref. 68). In this study for

wing-body and wing-body-tail configurations, it is assumed that Cdn 1.2 for all values of

M n (and hence, Moo).

The axial distance from the body base to the normal-force center is given (in body

diameters) by

- Xac Cm (_ - Xm)
- + (5.5)

d CN d

In this study, we present normal-force centers instead of Cm values.
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The entire method hasbeencomputerprogrammedfor AmesResearchCenterby

NielsenEngineering& Research,Inc., Mountain View, Calif. The program is similar to those

given in reference 69, and it combines essential parts of the N-K-P and crossflow programs in

reference 69. It is written in Fortran IV for the CDC 6600 or 7600 machines. No tapes,

drums, or disks other than the standard input/output units are required. The running time

for a typical case is less than 1 sec.

5.3 Comparison of Computed With Measured Normal-Force and

Normal-Force-Center Characteristics

In figures 31 through 36, computed values of CN and (_ - Xac)/d versus a are com-

pared with measured values (refs. 20 and 21 ) for some of the body-wing and body-wing-tail

configurations studied. As for the bodies alone, the normal-force coefficients are based on

body cross-sectional area at the body base. Of course they can be easily converted to the

more often used exposed wing planform area by dividing by Aw/A b, where Aw/A b = 15.92

for the bodies with Ws and 16.49 for the bodies with W2. The comparisons are made for the

configurations at a = 0 ° to about 60 °. For configuration B _W s , Moo = 0.6, 0.9, 1.5, and 2.0

(fig. 31). For the other configurations (B1W2, B2 Ws, BI [4's TI, Bl W2 T1, and B 2 [¥s T),

Moo = 0.6 and 2.0.

5.3.1 Body-wing configurations- Let us first look at the results in figure 31 for the

circular body BI with the aspect ratio 3 wing W s . At Moo = 0.6 (fig. 31(a)), the measured

CN values are predicted closely by the modified N-K-P potential method only for a up to

about 10 ° or 15 ° . Then this potential-flow method overpredicts CN for most of the higher

o_ range considered. With even the potential-flow method overpredicting CN, the combina-

tion of the potential-flow and crossflow methods greatly overpredicts CN. It is to be

expected, however, that at a near 90 ° the combination method should predict CN reason-

ably well, since CN is given entirely by the crossflow method (modified Newtonian impact

theory) at c_ = 90 °. Despite the difficulty in predicting CN over most of tile high a range,

the positions of the normal-force center are predicted closely by the combination method.

With increase in Mach number to M_o = 0.9, the comparisons of computed with mea-

sured results are not significantly improved (fig. 31(b)). In tact, the normal-force centers are

not predicted as closely as at Moo = 0.6. Not until the free-stream Math numbers become
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supersonicdo the modifiedN-K-Pand combinationmethodsgivereasonableestimatesof

CN. At Moo-- 1.5, the measured CN results are only underpredicted a small amount by the

modified N-K-P method for a up to about 30 ° or 40 ° (fig. 31(c)). At Moo = 2.0, the CN

results are predicted best by the combination method throughout the a range studied,

although the experimental results are still overpredicted by this method (fig. 31(d)). It

appears that the combination method should improve in its ability to predict CN as Moo

increases throughout the supersonic range.

With increase in wing aspect ratio from 3 to 4 (configuration B l W s to B 1 W z), the

comparisons generally are not changed significantly. As shown in figure 32(a), for Moo = 0.6

the modified N-K-P and combination methods still overpredict (_¥ significantly at high or. In

fact, the overprediction for B_ W2 is greater than for B_ W s (compare figs. 31(a) and 32(a)).

As for the lower-aspect-ratio configuration, the CN results are predicted best by the com-

bination method as the Mach number is increased to Moo = 2.0 (fig. 32(b)).

When the body cross section is changed from circular to elliptical with the same aspect-

ratio-3 wing (configuration B_ Ws to B2 Ws), the CN results for Moo = 0.6 are predicted

closely (possibly fortuitously) by the modified N-K-P method (fig. 33(a)). As before, when

the Mach number is increased to Moo = 2.0, the combination method still gives the best CN

prediction throughout the c_range (fig. 33(b)).

The break or significant deviation from linearity in the CN curve with increasing angle

of attack at the subsonic Mach numbers makes it extremely difficult to formulate a rational

method for predicting C¥ throughout the high o_ range. This break is attributed to flow

separation over the wing upper surface. For wings of generally lower aspect ratio and higher

leading edge sweep than those studied here, the break has been attributed to vortex break-

down near the wing trailing edge of vortices shed from the leading edge. Vortex breakdown

or bursting has been studied rather extensively by Wentz and Kohlman (ref. 70) for thin

delta and modified delta wings with sweep angles from 45 ° to 85 ° at low speed. They have

observed that as a increases the position of vortex bursting of the trailing vortices moves

upstream toward the trailing edge and crosses the trailing edge at a specific o_.Above this o_,

a loss of lift occurs on the wing due to vortex bursting, and the effect becomes progressively

larger as o_ increases. Mendenhall and Nielsen (ref. 71) have more recently collected data

from several investigators for the o_value at which vortex bursting occurs at the trailing edge
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of delta wingstestedat low speeds.Theywereunableto correlatethedataandsuggested

that the factorswhichcontrolvortexburstingwerenot reproducedor controlledbetween

the varioussetsof testdata.The wingsusedin the presentinvestigationweregenerally

sweptlessthan thosestudiedby WentzandKohlman(ref. 70)andMendenhailandNielsen

(ref. 71). However,a 45° deltawingsimilarto that of lgI (fig. 29(a))wasinvestigatedby

Wentzand Kohlman(ref. 70). For this wing they failedto observevortices,but they, of

course,measureda lossin CL with increase in c_ over a particular value (near 20°). Despite

the interesting research thus far, it seems that further research into the factors that control

vortex bursting and flow separation is needed. The CN versus _ data presented here indicate

that this is especially desirable for subsonic Mach numbers. Some initial exploratory flow-

field pictures from recent vapor-screen and oil-flow tests are presented in chapter 6.

5.3.2 Body-wing-tail configurations-- Now consider the results for the same body-wing

combinations but with the tail added (figs. 34-36). Generally, the comparisons of computed

with measured results indicate similar trends as for the body-wing configurations. At

Moo = 0.6 and for the circular body B_, the CN results over most of the investigated o_range

are underpredicted, even by the modified N-K-P method (figs. 34(a) and 35(a)). With change

to the elliptic body, however, the CN results (for B2 Ws T) are closely predicted up to a near

50 ° (fig. 36(a)). At Moo = 2.0, the CN results are predicted best by the combination method

(modified N-K-P plus crossflow), although as for the body-wing configurations the measured

results are still overpredicted (fig. 36(b)).

With the addition of the tail, there is generally more movement of the aerodynamic

center (_ - Xac/d) with ot at Moo = 0.6 (compare, e.g., results for B_ Ws and B_ Ws T in

figs. 31 (a) and 34(a)). This movement, which takes place at o_from about 10 ° to 40 °, is only

partially predicted by the combination method. It may be attributed to forebody and wing

wake flow over the tail. Further investigation of the forebody and wing wake flow over the

tail appears to be desirable.

From the comparisons presented, it seems obvious that the methodology presented

here represents only an initial step into the complex problem of predicting the aerodynamic

characteristics of body-wing and body-wing-tail configurations to very high angles of attack.

The reader interested in this field may wish to study several other initial approaches such as

those of Mendenhall and Nielsen (ref. 71) and Axelson (ref. 72). One should also include the
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Polhamussuctionanalogyfor wings(ref. 73) andsomeof its variousadaptationsandexten-

sions(e.g.,refs.71, 74, and75). Muchadditionalresearchisnecessaryin the highc_ field,

and this research initially should include visual observations of the flow fields. In chapter 6,

we will show some of the photographs obtained from an exploratory visual study of the

flow over bodies alone, bodies with a wing, and bodies with a wing and a tail.
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CHAPTER6

VISUALOBSERVATIONOFFLOWSOVERMODELS

It is a well-establishedfact that asthe angleof attack (or incidence) of a model is

increased above about 5° or 10 ° some flow separates from the upper surface, and vortices

and/or regions of flow separation are formed. The basic vortex phenomena are easily

described by referring to a body of revolution (see sketch (k)). At low to moderate angles of

attack, two vortices are shed from the pointed body, and the vortex formation is sym-

metrical (e.g., refs. 2, 5, 6, 13, 25, and 27). With further increase in angle of attack, the

vortex formation may become somewhat asymmetrical. At some higher angle of attack, the

feeding vortex sheets tear, and three or more vortices may appear (depending on the model

geometry and free-stream flow conditions as well as angle of attack). Both symmetric and

asymmetric vortex formations are illustrated in sketch (k). Although generally illuminating

Symmetric vortex formation

Asymmetric vortex formation and breokoway

Sketch (k)
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in concept,the illustrationsin sketch(k) aresomewhatsimplistic,andfurtherobservations

of vortex formations over many bodies alone and with wings and tails at various free-stream

flow conditions are desirable.

For observing the vortex formations over many models, the "vapor-screen technique"

(e.g., refs. 2, 6, 76, and 77) is very useful and much less time-consuming than the more

detailed pressure-probe-survey techniques (e.g., refs. 5 and 25). In this study, we have used

the vapor-screen technique to observe the vortex formations over many of the same model

configurations considered in chapters 3 through 5. In addition, we have added several ogival

noses of different fineness ratio that attach to the body and body-wing-tail combinations

previously described. To observe surface flow and especially flow separation positions, the

"oil-flow technique" (e.g., refs. 6, 17, and 76) also has been used for many of the same

configurations.

In this chapter, photographs are presented that show the flows over the various bodies

alone and in combination with a wing and a wing plus tail at a = 10° to 50 ° . The free-

stream Mach numbers are 0.6, 0.9, and 2.0, and the Reynolds number is about 4.3X10 s

based on body diameter. Before presenting the photographs, we will specify which models

are considered and briefly review the vapor-screen and oil-flow techniques used for the tests

in the Ames 6- by 6-Foot Wind Tunnel.

6.1 Models Considered

As in the previous chapters, the models considered are identified according to body B,

nose N, cylinder C, cylinder strake S, wing W, and tail T. For the bodies of elliptic cross

section (fig. 24), the roll orientation 4_ is also specified. The configurations investigated and

the figures in this report where the configuration dimensions are given are listed as follows:

Configuration Figure

B1 = NICI 24, 37

N2C1 37

N3 CI 37

N4 Cl 37

N 3 C 1S 37
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Configuration Figure

B 2 _b= 0 ° 24

B2 _ -- 90 ° 24

B3 q_= 0 ° 24

B3 _ = 90 ° 24

BIWs = NICIWs 29

B IW2 = NICIW2 29

BIW2T = I(liCIW2T 29

N3 Cl W2 29,37

N3C! W2 T 29,37

Plan-view sketches of these configurations are shown in figure 38.

Figure 37, which has not been presented before, shows a series of circular-arc tangent

ogive noses that attach to the circular cylinder C_. Noses N_, N:, and N3 have fineness

ratios of 3, 3.5, and 5, respectively. Nose N4 is formed by rounding the tip of a fineness-

ratio-3.5 ogive (such as N2 ) to give a resulting fineness ratio of 3.

The thin wings and tail shown in figure 29 also attach to the cylinder Cl, so many

combinations of nose, cylinder, wing, and tail are possible. For this report only some

representative combinations are considered.

6.2 Vapor-Screen and Oil-Flow Techniques

6.2.1 Vapor-screen technique- In the vapor-screen technique, the wind tunnel is run

with moist air. In fact, water is added to the airstream as needed.

For supersonic Mach numbers, as the moist air expands through the supersonic nozzle

into the test section it cools, and the moisture condenses to form a fog. This fog is illumi-

nated by a sheet of bright light produced by high-intensity mercury-vapor lamps and pro-

jected through the tunnel window(s) and across the stream. This sheet of light appears as a

uniformly lighted screen of fog particles in the absence of a disturbance. However, with a

model in the stream the uniform distribution of fog particles is disturbed, and the model

disturbance affects the light scattered by the water particles. Wakes and vortices typically

appear as dark "holes" in the screen.
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For veryhighsubsonic(Moo= 0.9) andtransonicMachnumbers,similardark regions

mayappearat thevortex locations,but for lowersubsonicflows(Moo= 0.6) light (conden-

sation)regionsoften appearat the vortex locations.Thereare,in fact, caseswherea light

areawill appearabovealeft wingpanelandadarkareaabovetherightpanel,andbothareas

will indicateseparatedregionsand/orvortex flow. The physics may not always be simply

explained, but the reader interested in more detail is referred to the treatise of McGregor

(ref. 77).

Figure 39(a) shows a schematic drawing of the vapor-screen apparatus for the Ames 6-

by 6-Foot Wind Tunnel. Two light-source boxes and various camera locations are indicated.

In this study, two light boxes were used for observations at Moo = 0.6, but only one was

required for necessary illumination at Moo = 0.9 and 2.0. Each box contains six 900-W

mercury-vapor lamps (BH-6) and mirrors to reflect the light through collimating slits. The

light boxes (shown in fig. 39(b)) connect to a common shaft that passes over the tunnel, and

the boxes can be pivoted in tandem and moved so that the light screen can cut the model

longitudinal axis at the desired positions. A Honeywell-Pentax spot light meter was focused

on the vapor screen and moved with the light box shown in figure 39(b) to aid in maintain-

ing consistent illumination for the photography.

For the present investigation, a Hasselblad 70-ram still camera (model 500 EL/7) was

mounted on the sting support rearward of the model base (fig. 39(c)). The camera was

enclosed in a protective housing. The 16-mm gun camera shown mounted above the Hassel-

blad in figure 39(c) was not used for this study. All models were painted black to minimize

light reflection and to improve the quality of the photographs. The Hasselblad camera had a

50-ram f4 (wide-angle) lens, and TRI-X (400 ASA) film was used.

6.2.20il-/7ow technique- Flow patterns on the model surfaces at angles of attack

were visualized through use of the oil-flow technique. In this technique, the models were

covered with a mixture of oil and titanium dioxide (TiOz) and then run wet in the wind

tunnel. The formula for the mixture was 5 teaspoons of SAE 30 oil and 5 teaspoons of

TiO2, with about 3 drops of oleic acid added as an anticoagulant. To provide good contrast

of the mixture with the models, all models were first painted a flat black. Photographs of

the oil-flow patterns on the models were taken during each run with Hasselblad cameras
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focusedthrougha sidewindowanda specialsmallwindowat thetop of thetestsectionof

theAmes6-by 6-FootWindTunnel.

6.3 PhotographsObtainedfromVapor-ScreenandOil-FlowTechniques

6.3.1 Photographs from vapor-screen technique- Photographs taken with the vapor-

screen technique for the models at Moo -- 0.6, 0.9, and 2.0 are shown in figures 40 to 54.

Figure 40, presented as a prelude to the other figures, identifies some of the various items

that appear in the other figures: the light sheet, light shadow, model support, model base,

vortex regions, vortex feeding sheets, and local shocks. The two photographs in figure 40 are

for body N3C1 at a _ 30 ° and Moo = 2.0. Light sheets are shown at the base of the nose

(station 1) and at a more aft cylinder position (station 2). In the remaining vapor-screen

photographs (figs. 41-54), a photograph of the flow field at the body base (station 3) is also

included. The positions of the three flow-field stations are indicated on a model sketch in

each figure. A model shadow similar to that shown in figure 40 usually does not appear on

the photographs for Moo = 0.6. As previously mentioned, at Moo = 0.6, two light-source

boxes were used in tandem, and light came from both sides of the wind tunnel.

For a body of revolution (Bi =N_C_) at Moo= 0.6 (fig. 41(a)), the simplistic flow

model of the two rather tightly rolled-up vortices shown in sketch (k) is not evident, even at

a < 30 °. Rather there appear to be separation regions from both sides of the body that seem

to almost coalesce along the lee side but do not roll up. In fact, two narrow separation

sheets very close together appear to trail back from the nose over the body length. With an

increase in a to about 40 °, the separation regions from the nose appear more like the usual

vortex regions. However, these vortex regions are very light in color in contrast to the dark

regions at lower a, and these vortex regions become asymmetric as they trail back over the

body. Also, more than two regions develop.

With increase in Mach number to Moo = 0.9 and 2.0 (figs. 41(b) and (c)), the more

traditional vortex formations appear, where there are two rather symmetric vortices (dark

holes in the vapor sheet) shed from the body. Along both sides of the body, separation

sheets "feed" the vortices, and, of course, the vortices grow with movement from the nose

to the base of the body. At Moo = 2.0, local shocks from the vortex regions appear

(fig. 41(c)).
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From observationof figures41 to 43, the effect of increasingnosefinenessratio

from 3 (noseN, ) to 5 (nose N 3) can be studied. Generally, with an increase in nose fineness

ratio, the vortex formation becomes asymmetric at a lower c_. Compare, lbr example,

photographs for NI C_ at 0__ 30 ° (fig. 41) with those for N3C I at c__ 30 ° (fig. 43). For all

of these bodies, as for the remaining models to be discussed, vortex asymmetry is the worst

at the lowest Math number investigated (Moo = 0.6). Asymmetric flow separation and

vortex asymmetry are accompanied by undesirable side tbrces (considered in chapter 7).

When the tip of a fineness-ratio-3.5 nose (N2) was rounded to make a fineness-ratio-

3 nose (N4) , a strange vortex pattern developed at Moo = 0.6 for the body N4C t at _ _ 40 °

and 50 °. This pattern (fig. 44(a)) consists of two very symmetric vortices from the nose

located above two separation regions stacked one on top of the other (at station 2). The

entire unusual pattern appears to be symmetric even up to _ _ 50 ° . However, at the higher

Mach numbers (Moo = 0.9 and 2.0), the patterns are again similar to those for N 2 C 1 (com-

pare, e.g., figs. 42 and 44).

When strakes were attached to the side of the cylinder C_ of body N 3C_, the vortex

patterns became more symmetrical for o_ up to about 30 ° (compare figs. 43 and 45). How-

ever, at about 40 ° and above, there was no effect. Apparently, the asymmetric pattern,

originating with the fineness-ratio-5 nose, could not be influenced by the strakes back on

the cylinder. Note that the hand of the asymmetry of the vortices can be either left or right,

and occasionally the pattern will switch even while it is being observed during a test run.

When the body cross section was changed from circular (body BI ) to elliptic (body B2

with a/b = 2), the vortex patterns became more symmetric with the body oriented at 4_= 0 °

(flattest side toward the flow). This can be seen by comparison of figures 41 and 46. How-

ever, when the elliptic body B 2 was rolled to _ = 90 ° , the vortex patterns became more

asymmetric (see fig. 47).

From tests of body B3, the body of elliptic cross section with variable a/b, the vortex

symmetry was influenced mostly by the nose. As shown in figure 48, when B3 was oriented

at 4_= 0 ° (flattest side of nose toward the flow), the vortex patterns were essentially

symmetric at all test conditions. However, when B3 was rolled to 4_= 90 ° (thinnest side of

nose toward the flow), the patterns became quite asymmetric at many test conditions (see

fig. 49).
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WhenwingW s of aspect ratio 3 was attached to body B 1 , the body vortex growth over

the wings was retarded, but extensive regions of flow separation above the wing appeared

(fig. 50). These regions were especially large and diffuse for Moo = 0.6 and 0.9 (figs. 50(a)

and (b)). For Moo = 2.0, distinct vortices formed, originating at the forward wing-body

juncture at the leading edge, on the wing upper surface, and at the wing tips. Thus, at the

base of the body there were a pair of vortices from the nose, a pair from the wing-body

juncture, a pair from the wing leading edge, and a pair from the wing tips (see fig. 50(c)).

In contrast with the flow at M_ = 2.0, the flow at Moo = 0.6 is very diffuse, and there is

the possibility that the phenomenon of vortex bursting or breakdown (e.g., refs. 70 and 71 ) has

taken place at the higher angles of attack. This phenomenon (mentioned in chapter 5) might

be indicated in some of the vapor-screen pictures by the light-colored diffuse vortex regions.

Such regions can be observed at Moo = 0.6 for both bodies alone and with wings, especially at

the higher angles of attack. The phenomenon of vortex bursting might help explain the fact

(demonstrated in previous chapters) that the CN characteristics for the bodies alone and with

wings and tail are generally predicted best at the supersonic Math numbers. The prediction

methods, of course, do not account for this phenomenon.

When wing W2 of aspect ratio 4 was attached to body B_, similar flow patterns were

obtained as with wing Ws of aspect ratio 3. This can be confirmed by comparing the

photographs in figures 50 and 51. Note, however, that the vortices shed from the wing tips

ofB_ W2 at Moo = 2.0 lie outside the photograph frames.

With the addition of the tail T to configuration B IW2, there were no appreciable

changes in the flow patterns (see photographs in figs. 51 and 52).

When wing W2 was attached to body N3C_, the nose-cylinder configuration that

produced the greatest asymmetry at Moo = 0.6 and 0.9, the vortex asymmetry from the

fineness-ratio-5 ogival nose still persisted (compare figs. 43 and 53). This asymmetry also

persisted when tail T was attached to the configuration (see fig. 54).

6.3.2 Photographs from oil-flow technique- To obtain visual indications of the flow

over the surface of the models, the oil-flow technique was used. Photographs from this

technique support those from the vapor-screen technique in that flow-separation positions

are quite clearly defined. As illustrated in a schematic of a body crossflow plane (sketch (1)),
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oil ridgesform nearseparationregions,andflowsymmetryor asymmetrycanbecorrelated

with resultsfrom thevapor-screentechnique.

I_j._ Separation

"_Vn = \./_o sin

Primary vortex region

Secondary vortex region

Sketch (1)

Photographs taken with the oil-flow technique for some selected models at Moo = 0.6,

0.9, and 2.0 are shown in figures 55 to 65. Both planform and side views are shown at the

specified angles of attack. To avoid a tunnel support at the top of the test section, the

planform views were taken with the camera somewhat off center, so the model planforms

are not completely symmetrical. For convenience in comparing the oil-flow and vapor-

screen photographs, the figures for each technique are indexed as follows:

Oil-flow Vapor-screen
Configuration figures figures

Bi = NiCi 55 41

N2CI 56 42

N3 Cl 57 43

N4C1 58 44

N3 C1S 59 45

B2 _b = 0 ° 60 46

B 2 _b = 90 ° 61 47
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Oil-flow Vapor-screen
Configuration figures figures

B3 4_ = 0° 62 48

B3 _ = 90 ° 63 49

BIWzT = NICIW2T 64 52

N3 C1 W2 T 65 54

The reader, of course, can make detailed observations of the comparable oil-flow and

vapor-screen photographs for configurations of particular interest. Generally, when there is

asymmetric flow separation from a model surface (indicated by the oil flow), there is also

asymmetric arrangement of the vortices in the flow field (indicated by the vapor screen).

Again, note that the hand of the asymmetry can be either left or right. Thus, because the

oil-flow and vapor-screen photographs were not taken simultaneously, it is possible to

observe a left-hand separation asymmetry and a right-hand vortex asymmetry or vice versa.

The observer also should be aware that some local flow disturbances in the oil flow result

from joints and wax-filled screw holes in the bodies.
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CHAPTER7

EXPERIMENTAL SIDE FORCES ON MODELS AT/3 = 0 °

When models are pitched to high angles of attack, side forces can occur on the models

even at zero sideslip angle (e.g., refs. 12-21,78, and 79). These side forces generally occur at

angles of attack between about 20 ° to 60 ° and in the subsonic-transonic Mach number

range. They result from asymmetric flow separation and vortex flow over the leeward side

of the models as shown in the photographs presented in chapter 6.

As noted in a recent paper by Keener, Chapman, and Kruse (ref. 78), some aircraft

have been lost due to uncontrolled flight at high angles of attack, and some of the loss in

controllability might have originated from undesirable side forces and yawing moments

attributed to flow separation and vortex asymmetry. Research on this phenomenon recently

has increased considerably because the flight envelopes of modern aircraft and missiles are

being extended into the higher angle-of-attack range.

We will now present and discuss some side-force data obtained recently (refs. 16,

18-21) in the Ames 6- by 6-Foot Wind Tunnel for most of the model configurations

considered in previous chapters (especially chapter 6) and shown in figure 38. For the bodies

alone, we will discuss the effects of nose-fineness ratio, Mach number, nose-tip rounding,

afterbody side strakes, and elliptic cross section. Then we will consider the effect of adding

a wing and a wing plus tail to a body.

7.1 Bodies Alone

7.1.1 Effects of nose fineness ratio and Maeh number- In figure 66, the effect of

nose fineness ratio _N/d on side-force coefficient Cy and center position (_- Xsf)/d for

ogive-cylinder bodies of revolution is shown. Both Cy and (_ - Xsf)/d , measured from the

body base, are plotted as a function of angle of attack o_for o_up to 60 °. Plots are presented

for Moo = 0.6, 0.9, and 1.2. The models were tested at Mach numbers up to M_ = 2, but

there were no side forces above about M_ = 1.2. The magnitudes of the side forces decrease

with increasing Mach number.

It is readily apparent from figure 66 that the largest side forces were obtained with the

fineness-ratio-5 nose N 3 attached to the cylinder afterbody C1 (of fineness ratio 7). With

decrease in nose fineness ratio, the side forces decrease, and they almost disappear over most of
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the o_ range for the body with the fineness-ratio-3 nose. For body N3C1 (with the fineness-

ratio-5 nose) at Moo = 0.6, it has been shown that the maximum value of side force can

become about 40 percent of the normal force (ref. 16). Keener et al. (ref. 78) have recently

shown that the maximum value of Cy increases even more (to the order of CN or greater) as

the Math number is decreased from 0.6 to 0.25. There is no question that the side-force

coefficients increase with decrease in Mach number and/or increase in nose fineness ratio.

Wardlaw and Morrison (ref. 79) also support these conclusions from their recent correlations

of collected data.

Note that the side-force centers seem to, start well back on the cylinder: then as 0_

increases above about 25 °, they move forward onto the nose (see, e.g., fig. 66(a)). At some

much higher a (say about 45 ° to 55 ° ) they then tend to move back onto the cylinder. Note

also that for N 3 Cj, the body with the largest side forces, the maximum values of Cy are

located well forward on the body.

The side forces can be studied in conjunction with the vapor-screen photographs shown

in chapter 6. In figure 67, the data for N 3 C 1 at Moo = 0.6 and 0.9 are plotted along with the

vapor-screen photographs (from figs. 43(a) and (b)) taken at o_ = 10 °, 20 °, 30 °, 40 °, and

50 °. The vapor-screen photographs shown in figure 67 were taken at a crossplane station

3.5 diameters forward of the model base. It is obvious that when the vortices become

asymmetric (between o_ = 20 ° and 30 °) the side forces develop. So long as the vortices

remain steadily asymmetric, the side forces remain. Of course, as shown in chapter 6, an

asymmetric vortex system results from asymmetric flow separation from the body surface.

There is obviously a need to analytically model the instability process that leads to asym-

metric separation, asymmetric vortices, and undesirable side forces.

In lieu of a theoretical method for computing the angle of attack for onset of side

force, experimental procedures must be used. Keener-et al. (ref. 78) have found that the

onset angles can be roughly correlated with nose fineness ratio (or semiapex angle) as

families of curves of constant afterbody. They have found that the angle of onset of side

force for a given body is essentially invariant with Mach number, and, for a nose with no

afterbody, the onset angle is given approximately by two times the semiapex angle. The

general effect of increasing afterbody length is to decrease the angle of onset; that is, the

longer the afterbody the smaller the angle at which a side force is first encountered. A
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somewhat similar finding is reported by Wardlaw and Morrison (ref. 79). They also have

produced (ref. 79) a rough correlation of data for the angle of attack at which the maximum

side force is observed. It tends to decrease with increasing Mach number and body fineness

ratio.

Keener et al. (ref. 78) also have made a rough correlation of data for the "upper-limit"

angle of attack at which the static side lbrce disappears and the wake flow becomes essen-

tially oscillatory like a Karman vortex street from a two-dimensional cylinder. This upper-

limit 0_also tends to decrease with increasing Mach number, varying from about a maximum

of 80 ° at Moo = 0.25 to a minimum of 50 ° at Moo = 0.9.

7.1.2 Effect of nose-tip rounding- When the tip of a fineness-ratio-3.5 nose (N2) was

rounded to make a fineness-ratio-3 nose (N4), the side forces at Moo = 0.6 and 0.9 almost

disappeared. This is shown in figure 68 where Cy and its center position are plotted against

o_ for bodies N1Cj, NtCI, and N4C1. As discussed in chapter 6, this nose rounding brought

more symmetry to the flow field. The round-nosed body N4CI, however, appears to be no

better than the sharp-nosed body NI C_ of the same t'ineness ratio (9,N/d = 3).

7.1.3 Lffect of afterbodv side strakes When strakes were attached to the sides of the

cylinder C_ of body N3C 1 (£N/d = 5), the side forces were not significantly changed. As

shown in figure 69, the variation of Cy with a was changed somewhat, but the maximum

values of Cy were about the same.

7.1.4 Effect of elliptic cross section The effect of elliptic cross section and roll angle

on side-force coefficient and position is shown in figure 70. Results are compared for body

BI (a circular body of _/d= 10) and body B2 (the equivalent elliptic body of constant

a/b = 2) at Moo = 0.6 and 0.9. With the elliptic body B2 oriented at ¢ = 0 ° (flat side

pitching against the free-stream flow), the side-force coefficients are very small and close to

those lot B_. However, when B2 is rolled to ¢ = 90 ° , the side-force coefficients increase

considerably. According to reference 18, Cy becomes more than twice CN at a = 50 ° for

B 2 at ¢= 90 ° and Moo = 0.(_. As shown in chapter 6, the separation and vortex patterns were

very symmetric for B2 at 4_= 0 °, but they became very asymmetric for B 2 at _ = 90 ° .

From tests of body B3, the body of elliptic cross section with variable a/b, it was

found that the wake flow-field asymmetry and side forces were influenced mostly by the

nose. As shown in figure 71, when B 3 was oriented at _ -- 0 ° (flattest side of nose pitching
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againstthe free-streamflow), the side-forcecoefficientswereverysmallandcloseto those

lbr BI (the equivalent body of revolution). However, when B3 was rolled to _ = 90 ° ,

undesirable side forces developed, and, as shown in chapter 6, the vortex flow was quite

asymmetric (fig. 49).

As for the bodies of revolution, the maximum values of side-force coefficient decreased

as the free-stream Mach number increased. At Moo = 1.5 there were essentially no side

forces measured on any of the elliptic bodies, even for the worst roll orientation (ref. 18).

7.2 Body-Wing and Body-WingzTail Configurations

7.2.1 Effects of adding a wing and a wing plus tail to a body- In figure 72, the effects

on side-force coefficient and side-force position of adding a wing and a wing plus tail to a

body are shown. The body N3C1, which has a fineness-ratio-5 nose, produced the largest

side forces for the bodies of revolution tested. As shown in figure 72, these side forces and

their positions remain about the same with the thin wing W2 of aspect ratio 4 attached or

even with the tail T added. (Dimensions for the wing and tail are given in fig. 29 and for the

body in fig. 37.)

From these comparisons it can be concluded that the most important influence comes

from the body nose. As mentioned in chapter 6, the vortex asymmetry that appeared from

the fineness-ratio-5 nose, when tested with only the afterbody cylinder C1, still persisted

when the wing and the wing plus tail were attached (see e.g., figs. 43, 53, and 54).

7.2.2 Effects of wing aspect ratio attd taper ratio- For thin wings of about equal

planform area (fig. 29) but with aspect ratios of 3, 4, and 5, there was essentially no effect

of aspect ratio on the measured side forces for the body-wing models tested (ref. 20).

Likewise, a change in taper ratio from 0 to about 0.5 resulted in no appreciable side-force

effect (ref. 20). The results were also unchanged when the tail T (fig. 29) was attached to

the wing-body models (ref. 21 ).
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CHAPTER8

CONCLUDINGREMARKS

A reviewand an extensionof an engineering-typemethodhavebeenpresentedfor

computingthe normal-forceandpitching-momentcoefficientsfor slenderbodiesof circular

andnoncircularcrosssectionaloneandwith lifting surfaces.In thismethod,asemiempirical

term representingviscousseparationcrossflowis addedto a term representingpotential-

theorycrossflow.Jn the generalized equations written for CN and Cm, ratios are required of

the local normal-force coefficient per unit length for the cross section of interest to that lbr

the equivalent (same area) circular cross section. These ratios are given both from slender-

body and Newtonian theories. Formulas and numerical values of these ratios are included

here for winged-elliptic and winged-square cross sections, the square cross sections having

rounded corners if desired.

In computing normal-force and pitching-moment coefficients for the bodies alone,

slender-body .theory was used for the term representing potential crossfiow. In computa-

tions for the bodies with thin wings and a tail, the linearized potential-flow method of

Nielsen, Kaattari, and Pitts was used, modified for high angles of attack.

For many bodies of revolution, computed aerodynamic characteristics were round to

agree well with measured results for investigated free-stream Mach numbers from 0.6 to 2.9.

The angles of attack ranged from about 0 ° to 180 ° for Moo = 2.9 and from about 0 ° to 60 °

for Moo = 0.6 to 2.0. Agreement of predicted with measured results was best at supersonic

Mach numbers.

For several bodies of elliptic cross section, measured results were also predicted reason-

ably well over the investigated Mach number range from 0.6 to 2.0 and at o_= 0 ° to 60 ° . As

for the bodies of revolution, the predictions were best for supersonic Mach numbers. The

predictions were better for a body in which the cross-sectional shape (a/b) remained con-

stant over the length than for a body in which it varied. Although the prediction technique

probably can be improved with further research, it is felt that the predictions are suffi-

ciently accurate for most preliminary design studies.

For body-wing and body-wing-tail configurations with wings of aspect ratio 3 and 4,

measured normal-force coefficients and normal-force centers were predicted reasonably well

at the upper test Math number of 2.0. However, with a decrease in Mach number to
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Moo = 0.6, the agreement for CN rapidly deteriorated, although the normal-force centers

remained in good agreement. At the subsonic Mach numbers (Moo = 0.6 and 0.9) and angles

of attack above 10 ° or 20 °, the measured results were even overpredicted somewhat by just

the potential-flow term of the combination method.

From vapor-screen and oil-flow studies, it was observed that the flow was completely

separated over the wings at the subsonic Mach numbers for _ > about 20 °. There was some

evidence of vortex bursting or breakdown for some of the models (including bodies alone)

at subsonic Mach numbers. At Moo = 2, however, discrete vortices from the bodies and

wings were observed at the base of the models.

For many body, body-wing, and body-wing-tail configurations, vapor-screen and oil-

flow photographs were obtained for Moo = 0.6, 0.9, and 2.0 and ot = 10°, 20 °, 30 °, 40 °, and

50 ° . It has been observed that, when the separation and vortex patterns were asymmetric,

undesirable side forces could be measured on the models even at zero sideslip angle. These

side forces generally originated when the angle of attack exceeded about 20 ° .

For bodies alone, the side forces can be significantly affected by changes in Mach

number, nose-fineness ratio, nose bluntness, and elliptic cross section. The side-force coeffi-

cients decrease with increase in Mach number through the subsonic-transonic range and

disappear with increase in Mach number into the supersonic range.

From tests (at 0.6 _<Moo _< 2.0) of tangent-ogive noses connected to a circular cylinder

of fineness ratio 7, it has been found that the side-force coefficients increase from about

zero for a fineness-ratio-3 nose to a maximum of about 40 percent of the normal-force

coefficient for a fineness-ratio-5 nose. Other researchers have reported even more increases

in Cy (of the order of CN or greater) as the Mach number is decreased from 0.6 to 0.25.

Nose-tip rounding significantly decreased the side-force coefficients for a circular body

with a sharp-nosed ogive of fineness ratio 3.5. However, the beneficial decrease was no

greater than that obtained by merely using a sharp-nosed ogive nose of the same fineness

ratio (fineness ratio 3) as that for the resulting blunted nose.

When strakes were attached to the sides of the afterbody cylinder of an ogive-cylinder

model with an undesirable fineness-ratio-5 nose, the side forces were not significantly

changed. Thus, the influence of the nose was dramatized.
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Changesin crosssection from circular to elliptic for an ogive-cylinderbody (of

fineness-ratio-3noseand fineness-ratio-7afterbody)producedsomeinterestingeffectson

side-forcecoefficient.At all testMachnumbers(0.6to 2.0)andanglesof attack(0° to 60°),

the side-forcecoefficientsweregenerallysmallor negligiblefor the circularbody andthe

generatedelliptic bodiesat _ = 0° (flat side pitching against the stream crossflow). With the

elliptic bodies at 4_= 90 °, however, some values of side-force coefficient became as large as

twice the values of normal-force coefficient at the same high angles of attack. From the

standpoint of reducing undesirable side forces at high angles of attack, it was always found

best to have the flattest side of the elliptic-body nose pitching against the stream crossflow,

even when a/b was not constant over the body length.

Undesirable side forces measured for body-wing and body-wing-tail models were gen-

erally about the same as those measured for the bodies alone. As for the bodies alone, the side

forces developed at subsonic Math numbers for c_> about 20 °. Also, as for the bodies alone,

the side forces and yawing moments increased with increase in nose fineness ratio. Fineness

ratios greater than 3 produced the largest side forces. No effects of wing aspect ratio or

taper ratio were observed. From these comparisons, it can be concluded that the most

important influence comes from the body nose.

Ames Research Center

National Aeronautics and Space Administration

Moffett Field, California 94035, March 18, 1977
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APPENDIXA

DERIVATIONOF (Cn/Cno)NewtFOR WINGED-CIRCULAR
AND WINGED-ELLIPTICCROSSSECTIONS

Winged-CircularCrossSectionwithWingPlanformPerpendicular

to CrossflowVelocity

For blunt configurationsof the type

shownin sketch(m), it is assumedthat each

elemental particle of fluid strikes the

configurationat velocity Vn and thereupon

loses its normal component of momentum.

This leads to the well-known Newtonian

expression for the pressure coefficient:

Cp=2sin 2 8 (AI)

Vrl

v

Y

8

Sketch (m)

S

±

×

where 8 is the local angle that a tangent to a forward-facing surface makes with the

free-stream direction (sketch(m)). In Newtonian flow, the pressure coefficients over the

rearward face are assumed to be zero. The total section crossflow drag coefficient (based on

body diameter, d = 2r) is then given by

2gcd= a- Cpdy

_2frd Cpbody dy + d Cpwing dy
0

(A2)

For a circular section, as shown in sketch (m),

x 2 + y2 = r2 (A3)

./5,
tan 6 dy x rl/%.... 1 (A4)

cbc y Vy"
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and

since

tan2 _ y2sin 2 6- - I
1 + tan 2 6 r z

Equations (AI) and (A5) are substituted into equation (A2) to give

ca=9- 2 -;_ dy+ _ 2dy
r

Cpwing 2 sin 2 _5 = 2

From integration of equation (A6), we obtain

4
Cd=_+ 2( s- 1)

where, for the equivalent circular section,

4
Cdn- 3

(A5)

(A6)

(A7)

(A9)

Thus, the ratio of the normal-force coefficient per unit length for the winged-circular

section to that for the equivalent circular section is given by

c-25 -
k' O/Newt _dn/New,

3

Winged-Elliptic Cross Section with Semimajor Axis and Wing Planform

Perpendicular to Crossflow Velocity

For a winged-elliptic cross section where the semimajor axis a and the wing planform

are perpendicular to the crossflow velocity Vn (see sketch (n)), the same procedure is

followed in the derivation of (Cn/Cno)New t as introduced for the winged-circular cross

section. Both the basic equations, (A1) and (A2), are used again.
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Y For an elliptic body, as shown in sketch (n),

X 2 y2

b--5 + _ = 1 (All)

Vn tanS-dY- a2 (-_) - a vfa2dx b 2 b _5- 1 (A12)

X

and

sin 2 6- tan2 6 - a2_y2

L 1 + tan 2 6 a2 _y2[ 1 _ (b2/a2)] (AI3)

Sketch (n)

With equation (AI3) combined with equations (AI), (A2), and (A7), we obtain the

section crossflow drag coefficient:

4 fa o5- y2 4 fa rCd= -d a2 _y2[ 1 _ (b2/a2)] dy + --d- dy (AI4)
O

where d is the diameter of the equivalent circular body and is given by

d = 2 x//a-b (A15)

Also, as for the winged-circular cross section, the crossflow drag coefficient for the equiva-

lent circular cross section is given by Cdn = 4/3.

Thus, by integrating equation (AI4), substituting 2x/-a-b for d, and dividing the result

by 4/3, we obtain

/1
+ s_ 17 (AI6)+

1 - (b 2/a s ) a !
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since

ca

Winged-Elliptic Cross Section with Semiminor Axis and Wing Planform

Perpendicular to Crossflow Velocity

For a winged-elliptic cross section

where the semiminor axis b and the wing

planform are perpendicular to the cross-

flow velocity Vn (sketch (o)), the same

procedure is followed as for the previous

configurations.

For an elliptic body as shown in

sketch (o),

X 2 t, 2
--+- =1
a 2 b 2

Vn

v

Sketch (o)

(A17)

tan6_ dy_ b 2 (y) b b¢__5ax - -1 (AI8)

and

sin 2 6- tan 2 6 _ b 2 _ y2
1 + tan 2 6 b 2 _ y2[l - (a 2/b 2)]

(A19)

With equation (A19) combined with equations (A1), (A2), and (A7), we obtain

Cd = b 2 _ y2[1 - (a z/b 2)] dy +

0 0

dy (A20)

where d = 2v_ is the diameter of the equivalent circular cross section. As before, the cross-

flow drag coefficient for the equivalent circular cross section is given by Cdn = 4/3.

Thus, by integrating equation (A20), substituting 2x/_ for d, and dividing the result

by 4/3, we obtain
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since

ca
_ew,-- _ew,

+s_b 1}

(A21)

63



APPENDIXB

DERIVATIONOF (Cn/CnO)NewtFORWINGED-SQUARECROSSSECTIONS
WITH ROUNDEDCORNERS

For winged-squarecross sectionswith

roundedcorners(sketch(p)), the pressurecoef-
r--k

ficient over the front face is given by Vn

Cp -- 2 sin 2 _ (B1) -- T

where 6 is the local angle that a tangent to a $

forward-facing surface makes with the free- l
_.t_

stream direction. In Newtonian flow, the pres-

sure coefficients over the rearward face are Sketch (p)

assumed to be zero. The total section drag coef-

ficient (based on width w) is then given by

ca -- " c), d,,
0

2;w Cpbody dy + Cpwing

o _w/2

dy

-? f(w/2)-r (pjlat" dv + frW " W

0 0

C_
t corner

dy+m
W

fw/_ Cpwing
2

dy (B2)

For a rounded corner, as shown in sketch (p),

X2 + y2 = r2 (B3)

dv x V r_,_tan6 = _ ...... I
dx y

(B4)

and

tan 2 6 3,2
sin 2 6 - - 1

! + tan 2 6 r 2 (B5)
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Thepressurecoefficientfor the rounded corner, obtained by substituting equation (B5) into

(B1), is

=(-)Cpcorne r 2 1 _r2 (g6)

The pressure coefficients for the front flat portion of the body and for the wing are

given by

Cp=2sin 2 6 =2

since6 =90 ° .

Thus, with equations (B6) and (B7) substituted into equation (B2), we write

ca= 4f (_/2)-r 4fr( _:) 4_--w dr. + w 1 - 7 dr. + --w dr.

o 0 2

From integration of equation (B8), we obtain

(B7)

(B8)

Cd= w

Now, to obtain (Cn/Cno)Newt, it is necessary to find the diameter d of the equivalent
circular cross section which has the same area as the cross section studied. The area of the

(BI0)

equivalent circular cross section is, of course,

(BII)

and the area of the cross section studied is

A =w 2[1 - k 2(4- lr)]

By equating equations (B l 0) and (Bl 1), we obtain the equivalent diameter

1//1 - (4- Ir)k 2d 2w
V /r

With Cd from equation (B9) based on d instead of w,

(sCd=4 -

(B12)

(B13)
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where, for the equivalent circular section,

4

Cdn - 3 (B14)

Thus, from equations (B 12), (B 13), and (B 14), we obtain

o wt wt

(s_ k) ]//1-(4 _ rr)k 2 "

0_<k_<0.5

(B15)
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APPENDIX C

FORMULAS TO COMPUTE GEOMETRIC PARAMETERS FOR TANGENT OGIVES

To compute the aerodynamic characteristics of bodies of revolution having tangent

ogive nose shapes, various geometric parameters must be obtained. To compute CN and Cm,

the planform area Ap is required; to compute Cm, it is also necessary to obtain volume V

and distance x c from the nose vertex to the centroid of planform area. To compute skin-

friction drag, the wetted surface area A s is needed.

For an ogival nose of length _N and diameter d (see sketch (q)) the following useful

formulas have been derived (ref. 9):

\

ra

\

-- 2 _ _1_ R 2 sin-1

d 2 d

- (CI)

d3 7r _ --d5- _ 1 (C2)

Sketch (q)

and

Xc £N

d d

(2/3)1R3- [R 2 - (9_N/d)213/2 } -(_N/d) 2 [R- (I/2)]

Ap/d 2

d2 - 2 7rR - sin-_ +

where R is the ratio of the ogival arc radius ra to base diameter d and

(C3)

(C4)

R-ra - (_-) 2 +ld 4 (C5)
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Figure 3.- Variation of crossflow drag coefficient with crossflow Reynolds number for

circular cylinders at supercritical Reynolds numbers and at crossflow Mach numbers from

0.25 to 0.50 (from ref. 54).
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" ' 1l'_osEN2"I" cY,,NOERc,
7d I LRoo¥N_c, I--a

_/d :10.5 I

NOSE N7
h2.sd-_

BODY NTC I

BODY
.l/d= IN2.ClCz_ I

1
CYLINDER C2

_-2d-_

CYLINDER C3

_ODYN,C,C__ I i
._/d=13.5

Figure 18.- Ogive-cylinder bodies for which the aerodynamic characteristics have
been computed and measured for 0.6 _<Moo _< 2.0.

89



az
ww

_-- •
m,mrr
G_W
bJG.
n-X

W

I
0

x

(D
rr

u_ ur) oo oo

_ o_ _ 0

n-_

v

° Iw

n

0

_2

N_ u-
z_ z

0

I

CO

............ ,-..,.,,w,,

I@I_

N

@g'k:l
_LLI
umr.1 _ j

!.........................

o

0

• \

_. o

_t-

..................... L................................

Z
0

o

_V/
8

_V/
0
_c5
o

o

,- ro

_w

!

L_

90



E_Z
Wl,l

13. W
1.1.113-

W

I
0

x _ _ td to

to _. o_ o
do--_ "

W _

_o _ o o O,_ ,
'_, I,_
W _

a
w
I--
D I "_ •
_ I "
0 .
0 I -

_y. -

1_ o_
p_

N Z

j---

,,,,,.,,,,,,,i ......

I

.... i

!

II1

N

: : w

................. I....

o
Pd

O

O

0

(D

G

O

0

0

A

E

_V/
8

o

o
.__ _

_. 0

_'_

o

,2

I

d
t"!

91



_L) i

, _z

(3

_y
%_.
Z_

O-x

, -,,

_1 I °!'-

0
_)

0

0

o-8

0
0J

0

0
_) oJ GO

z

0
_D

0

0

c_

¢)

0
oJ

0

0

_0

o

II
8

tj

0

_×
E_

_EV/

o .,8
ov
=o _.

_E__
o_

o

_==__°_'_°

o

_P

92



0

0
_[11 II1[ Ilrl tIll

\
0

0 =
_'- =

12) 5

0

0

0
Ill nlll I Ill II I

\

J
Ill III III Illlillll

(,D qd E)

0
ur)

z
(J

0
: _I"

) I :

f _

!

o

_o

(3",

0
II
8

.JD

_J

o
L_
r

rq
_J

Lt_

93



no
w w
__n _

0_

oN

I°

w_

>- J

i

w-t21

_ Lr.)

0d

z

_7

Z _

0"

_ 0 _ _

o

o

o

Z

o

o

o

0

94



ar-_
w w

gg

0

C-d

WX_

W221

_z"I

J

0

o_ 0 cO _.0 _I"

>_T, "_
C21"_
O"-
rn'_t

Z

0
tO

0
if)

0

C_

d

0

0

0

o
r-i

II
8

"-d

©

q

?
,.o

Lr.

95



8_
S_

8_

0

Z rO

O"-
en'_l

z

E

i

-=i
t

II_i III!llTTi

I
i

G !

i

_t'h
I

] i

o
1PC"

o
IP)

[

B
i

0

z

i --
L

JII
lull Jill nit IL t 0

o,i o co i.o _I-

/I

0

.--""_......1....................

"\ 0

[

1

_ o

o_

l-i I ii ,'

Z

o

H

8

_9

_9

o

_x

_V/

s_
oV/

@ ,

°_

_9

o

=&

o

r4

L_

96



_5
0_{/)

I°

r_

cr-

W j
n .
Z

b

LL

r_
<.)

Z rr)

O"-
cn'_t

Ill Llll

0

,_. ,,

@

0

o/
/

/
)

III ilii iJ]J

(:C)

0

=

--0
_ if')

=0
=

Z

-=0

_=

0

_=

Z

,,,,,,,T o

\

0

0

dill IIII lit I

z

_-,,_

: \

_ILI liil lill Illi Ill IlK IIII II1"

0U _ _ 0

0

\

\o
r :

_o

_n

o_,

Z

_5
II
8

.0

0

I
_q

L_

97



LI.J,I

8_

II III [11_

z

E

E

z
Z

: 2

E

z
Z

T_rF]
-_I

n_

1

-_TII IITI tlll]llll II11

I

__ i ]_o - I ,

4l j

_----- y -+_
' i

£] , ....iiii i iii i Ill Illll IIII llln-

;_V __ o_ _

u

rn'_l

E

0

0
ut_

0

d

0

0
I

0

ill w,v_

E

E

: ! /

_ILI IIII] II

z

0

0

0

d

0

_k

0

II
8

"C

e-
o

I

.__

98



0

0

Cn

_,tll iiii BIll Illl
I

:

:

-- li

lULl ILLJ IIII IJll Li

Z
(J

0
Wl i i rl i i i11 ii IL -

0

........ _L_ I 0

0

ll/i JilL ILl7

0

8

-S

©

rl

99



0

c.A)

._ o
E V_

*-" 0

.,,- _

0._

f'l

100



I
_ m +.___ t-

o

j c_ ,,,
o

O3
O3
0
n-
O

rY

._J

0
rY

0

"0

0

II

N

7- "'
>

(.9
0

I i-
Z

"0 w
(.9

_r_ Z

I!

b--

oi_
II

121 _
II

if)

if) I

Ii m

..Q

1"7
0
en

Z _
0 en

I-- >-

_') " ¢'n

0 o
r_
0

o

if)

d

d

_o
°b

JJw._

"o d

"1o

0

d

d

E

._..E _ >:,

e ;3

N b _-

.,...

%.,.

©

o

I

LI.

101



BI

B2 @: 90 °

B2 @ =0 °

B3 ,/,-90°

<CE-
(b) Planform views of configurations studied.

Figure 24. Concluded.
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(a) Planformviewat 0 = 0°.

(b) Planformviewat_ = 90°.

(c) Three-quarterview.

Figure25.- Photographsof aluminumbodyB s .
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A-A_ I

/Re" ASPECT RATIO FOR TWO EXPOSED
WING PANELS JOtNED TOGETHER I"Ct _

I qd Or--- -

--F VERTICAL TAIL, T v

2d

4-
d

(a) Body B1 with aspect-ratio 4 wings of various taper ratios

and tail arrangement.

ALL LINEAR DIMENSIONS

IN TERMS OF BODY DIAM, d
/- -.,

W4 5 4,761 64.36:3.972 2.622 0.715 0.273

W2 4 3.784 59.03 3.500 2.900 0.800 0.276

W5 3 2.910 51.33 2.964 3.295 0.924 0.280

/R • ASPECT RATIO FOR WING EXTENDED INTO BODY

/R e • ASPECT RATIO FOR TWO EXPOSED WING PANELS
JOINED TOGETHER

W5

W2

4d

T
(s- r)

(b) Body BI with wings of aspect ratio 3, 4, and 5 (W s, W 2, and W4).

Figure 29.- Components for body-wing and body-wing-tail models tested in
references 20 and 2 l.
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W4

W2

W 5

4.761

3.784

2.810

WSw3_
ALL LINEAR DIMENSIONS " W4-_\

IN TERMS OF BODY DIAM, d ' _\\

,e,s-r \\
64.363.9722.6220.7,50.2731 %,
59.033.5002.9000.8000.2761 \__
51.33 2.964 3.295 0.924 0.280 I

i-" ....... -_-- 4d Cr
_c__

(s-r}

! .

(c) Body B 2 with wings W 2 , W4, and W s .

Figure 29. Concluded.

}"-0.3535 d

1.414 d

-_ yBODYB__T
¢°0"

B,W_l5 _ _--J BI_IT _

Bi W2 \\\\ J

Figure 30.- Planform views of configurations for which the aerodynamic characteristics

were measured in references 20 and 21 and computed in this study.
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CYLINDER Cl

_ _N:3d "+- 7d

NOSE N,
I°

]

I
I

--ZN:Sd ""

N3

o.5d _-_ _- ZN:3d "-
I

CYLINDER C I

I
I

_-BEVEL LE ASTRAKE S

d

__..2 d

Figure 37.- Additional tangent ogive noses and strake for modification of body B].

B I ' NIC I

<::::5_ ....... J
N2CI

NaCI

N4C_

N301$

B 2 _-90"

B2 _-0"

@-90"

B l _.0"

/]
I _J

61W2 _ j

BIW2T

Figure 38. Plan-view sketches of configurations used for vapor-screen and

oil-llow studies.
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(b) Picture of light-box installation•

Figure 39.- Continued.
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(c) Picture of model and camera installation.

Figure 39.- Concluded.
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a _ 30 °

MODEL

STATION I

N3 CI \,
t

1
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STATION

A

2

I m

T
3.5d
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---_-- d

FEEDING

.UGHT •
_SHEET , .

-

Mm : 2.0

Figure 40.- Identification of typical items shown in vapor-screen photographs taken for a

body at Moo = 2.0.
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TOP

a _I0 °

SIDE

a _ 20 °

a _ 30 °

O__ 40 °

(a} Moo = 0.6.

Figure 55. Oil-flow photographs for B 1 = j\r 1('1 (body with fineness-ratio-3 nose).
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TOP

a _10 °

SIDE

a _ 20 °

a _ 30 °

a _40 °

(b) Moo = 0.9.

Figure 55. Continued.
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a__ I0 °

TOP

SIDE

a ,_20 °

a _ 30 °

a _ 40 °

(c) 31oo = 2.0.

Figure 55.- Concluded.
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TOP

(2 '_10 °

SIDE

O._ 20 °

a _ 50 °

a _ 40 °

(a) Moo = 0.6.

Figure 56. Oil-tlow photographs for N 2 C1 (body with fineness-ratio-3.5 nose).
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TOP

_10 °

SIDE

a _ 20 °

a _ 30 °

a _ 40 °

(b) Moo = 0.9.

Figure 56.- Continued.
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TOP

a_lO °

SIDE

a _20 °

a_30 °

a _ 40 °

(c) M_ = 2.0.

Figure 56. Concluded.

187



TOP

a _ I0 °

SIDE

a _ 20 °

a _ 30 °

a _ 40 °

(a) Moo = 0.6.

Figure 57. Oil-flow ptlotographs forN3Cl (body with fineness-ratio-5 nose).
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TOP

a _ I0 °

SIDE

a _ 20°

a _ 30"

a _ 40 °

(b) Moo = 0.9.

Figure 57.- Continued.
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TOP

a -10 °

SIDE

a -20 =

a -30 °

a "40 °

(c) Moo = 2.0.

Figure 57.- Concluded.

190



TOP

a _ I0 °

a _ 20 °

at _ 30 °

a ,_40 °

(a) M_ = 0.6.

Figure 58.- Oil-flow photographs for N4C 1 (body with blunt nose of fineness ratio 3).
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TOP

a _ I0 °

-i

a _ 20 °

a m 30 °

a m4o °

(b) Moo = 0.9.

Figure 58.- Continued.
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TOP

a _I0 °

SIDE

a _ 20 °

a _30 °

a _ 40 °

(c) Moo = 2.0.

Figure 58.- Concluded.
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TOP

a _,10°

SIDE

a _ 20 °

a _ 30 °

a_40 °

(a) Moo = 0.6.

Figure 59. Oil-llow photographs for ,\"3 C'_S (body with l'incn_'ss-i_ttiu-5 nose and afterbody strake).
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TOP

cz_ I0 °

SIDE

C__ 20°

a _ 30 °

Cl _ 40 °

(b) Moo = 0.9.

Figure 59.- Continued.
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TOP

a_lO °

a _ 20 °

a _ 50 °

a _ 40 °

(c) Moo = 2.0.

Figure 59.- Concluded.
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TOP

a _I0 °

SIDE

a _ 20 °

a _ 30 °

a _ 40 °

(a) Moo = 0.6.

Figure 60.- Oil-flow photographs for B 2 at _b= 0 ° (body with constant a/b cross sections).
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TOP

a_lO °

SIDE

a Rs20 °

a _=30 °

a ==40 °

(b) Moo = 0.0.

Figure 60. Continued.
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TOP

a _I0 °

SIDE

a _, 20 °

a _ 30 °

a _ 40 °

(c) Moo = 2.0.

Figure 60. Concluded.
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a_ IO"

TOP

SIDE

a _ 20 °

a _ 30"

a _ 40"

(a) Moo = 0.6.

Figure 61. Oil-flow photogr_lphs for B 2 at 4_= 90 ° (body with constant a/b cross sections).
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TOP

CZ_I0 °

SIDE

a _ 20 °

a _ 30 °

a _ 40 °

(b) Moo =0.9.

Figure 61 .- Continued.
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a _ I0 °

TOP

SIDE

a _20 °

a _ 30 °

a _ 40 °

(c_ Moo-- 2.0.

Figure61. Concluded.
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TOP

a _10 °

a _ 20"

a _ 30 °

a _ 40 °

(a) 31oo = 0.6.

Figure 62. Oil-flow photographs for/]3 ;_it q5 " 0 ° (body with variable a/b cross sections).
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TOP

a _, IO°

SIDE

a ,_20 °

a _ 30 °

a _40 °

(b) Moo = 0.9.

Figure 62. Continued.

204



TOP

a _ I0 °

SIDE

a _ 20 °

a _ 30 °

a _ 40 °

(c) Moo = 2.0.

Figure 62. Concluded.
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TOP

a _ I0 °

SIDE

a _ 20 °

a _ 30 °

a _ 40 °

(a) ,'11_ = 0.6.

Figure 63. Oil-t'low ph_togr:ttflls t'or B 3 at _b= 90 ° (body with variable a/b cross sections).
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TOP

a_lO °

SIDE

a _ 20 °

a _30 °

a _ 40 °

(b) 4Ioo = 0.9.

Figure 63. Continued.
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a s=10°

TOP

SIDE

a _ 20 °

a _ 30 °

a =40 °

(c) Moo = 2.0.

Figure 63. Concluded.
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_ I0 °

TOP

SIDE

a _ 20 °

(a) Moo = 0.6.

Figure 64.- Oil-flow photographs for B1192 T = N1C_ W2 T (body with fineness-ratio-3 nose,

aspect-ratio-4 wing, and tail).
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a _ 30 °

POST-RUN SAME AS

PRE-RUN OIL PATTERN

TOP

SIDE

a _ 40 °

POST-RUN SAME AS

PRE- RUN OIL PATTERN

(a) 31_ = 0.6 Concluded.

Figure 64.- Continued.
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a _ I0 °

TOP

SIDE

a _ 20 °

(b) Moo = 0.9.

Figure 64. Continued.
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a _ 30 °

-POST-RUN SAME AS
PRE-RUN OIL PATTERN

TOP

SIDE

a ==40°

-POST-RUN SAME AS
PRE-RUN OIL PATTERN

(b) Moo = 0.9 Concluded.

Figure 64.- Continued.
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a_lO °

TOP

SIDE

a _ 20 °

(c) M_ = 2.0.

Figure 64.- Continued.
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TOP

a _ 30 °

SIDE

a _40 °

POST-RUN SAME AS
PRE-RUN OIL PATTERN

(c) Moo = 2.0 Conclud_'d.

Figure 64. Concluded.
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TOP

a_lO °

SIDE

a _ 20 °

(a) Moo = 0.6.

Figure 65. - Oil-flow photographs for ;\'3 CI W 2 T (body with fineness-ratio-5 nose,

aspect-ratio-4 wing and tail).
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a _ 30 °

-- POIT- IIIU_

PAE-IIUII
OILIt_TTI_N

TOP

SIDE

a _ 40 °

-- POST- RUN
SAME AS
PRE -RUN
OIL PATTERN

(a) Moo = 0.6 - Concluded.

Figure 65.- Continued.
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TOP

a_lO °

SIDE

a_2_

(b) Moo = 0.9.

Figure 65.- Continued.
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a _ 30 °

7 POST-RUN
, SAME AS

PRE-RUN
_L PATTERN

TOP

SIDE

CZ_ 40 °

POST-RUN
SAME AS

PRE-RUN
OIL PATTERN

(b) Moo = 0.9 - Concluded.

Figure 65. Continued.
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TOP

(2 _I0 °

SIDE

a _ 20:

(c) Moo = 2.0.

Figure 65. Continued.
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a _ 30 °

TOP

SIDE

(_ _40 °

POST -RUN
SAME AS

PRE-RUN
OIL PATTERN

(c) Moo= 2.0 Concluded.

Figure 65. Concluded.
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(a) Moo = 0.6, Re = 4.3X10 s.

Figure 72.- Effects on side-force coefficient and side-force position of adding a wing and a
wing plus tail to a body.
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Figure 72.- Concluded.
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